Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adapting granular materials through artificial evolution


Over 200 years after Coulomb’s studies1, a general connection between the mechanical response of a granular material and the constituents’ shape remains unknown2,3,4,5,6,7,8,9,10. The key difficulty in articulating this relationship is that shape is an inexhaustible parameter, making its systematic exploration infeasible. Here we show that the role of particle shape can, however, be explored efficiently when granular design is viewed in the context of artificial evolution11. By introducing a mutable representation for particle shapes, we demonstrate with computer simulation how shapes can be evolved. As proof of principle, we predicted motifs that link shape to packing stiffness, discovered a particle that produces aggregates that stiffen—rather than weaken—under compression, and verified the results using three-dimensional printing. More generally, our approach facilitates the exploration of the role of arbitrary particle geometry in jammed systems, and invites the discovery and design of granular matter with optimized properties.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The impact of particle shape on mechanical response.
Figure 2: Representing particle shapes with blueprints.
Figure 3: Evolving particle shapes to obtain the stiffest and softest packings.
Figure 4: Stiffest and softest particle shapes built from spheres up to n = 5.
Figure 5: Strain stiffening.


  1. Coulomb, C. Mémoirs de Mathématique et de Physique 343–384 (L’Imprimerie Royale, 1773).

    Google Scholar 

  2. Jaeger, H. M., Nagel, S. R. & Behringer, R. P. Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996).

    Article  Google Scholar 

  3. Duran, J. Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials (Springer, 1999).

    Google Scholar 

  4. Pena, A. A., Garcia-Rojo, R. & Herrmann, H. J. Influence of particle shape on sheared dense granular media. Granu. Matter 9, 279–291 (2007).

    Article  Google Scholar 

  5. Zuriguel, I. & Mullin, T. The role of particle shape on the stress distribution in a sandpile. Proc. R. Soc. Lond. A 464, 99–116 (2008).

    Article  Google Scholar 

  6. Haji-Akbari, A. et al. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462, 773–777 (2009).

    CAS  Article  Google Scholar 

  7. Torquato, S. & Jiao, Y. Dense packings of the Platonic and Archimedean solids. Nature 460, 876–879 (2009).

    CAS  Article  Google Scholar 

  8. Schreck, C. F., Xu, N. & O’Hern, C. S. A comparison of jamming behavior in systems composed of dimer- and ellipse-shaped particles. Soft Matter 6, 2960–2969 (2010).

    CAS  Article  Google Scholar 

  9. Liu, A. J. & Nagel, S. R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010).

    Article  Google Scholar 

  10. Van Hecke, M. Jamming of soft particles: Geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Matter 22, 033101 (2010).

    CAS  Article  Google Scholar 

  11. Eiben, A. E. & Smith, J. E. Introduction to Evolutionary Computing (Springer, 2003).

    Book  Google Scholar 

  12. Zou, L. N., Cheng, X., Rivers, M. L., Jaeger, H. M. & Nagel, S. R. The packing of granular polymer chains. Science 326, 408–410 (2009).

    CAS  Article  Google Scholar 

  13. Baker, J. & Kudrolli, A. Maximum and minimum stable random packings of Platonic solids. Phys. Rev. E 82, 061304 (2010).

    Article  Google Scholar 

  14. Jaoshvili, A., Esakia, A., Porrati, M. & Chaikin, P. M. Experiments on the random packing of tetrahedral dice. Phys. Rev. Lett. 104, 185501 (2010).

    Article  Google Scholar 

  15. Wood, D. M. Soil Behavior and Critical State Soil Mechanics (Cambridge Univ. Press, 1990).

    Google Scholar 

  16. Galindo-Torres, S. A., Alonso-Marroquin, F., Wang, Y. C., Pedroso, D. & Munoz Castano, J. D. Molecular dynamics simulation of complex particles in three dimensions and the study of friction due to nonconvexity. Phys. Rev. E 79, 060301 (2009).

    CAS  Article  Google Scholar 

  17. Majmudar, T. S. & Behringer, R. P. Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005).

    CAS  Article  Google Scholar 

  18. Brown, E., Nasto, A., Athanassiadis, A. G. & Jaeger, H. M. Strain-stiffening in random packings of entangled granular chains. Phys. Rev. Lett. 108, 108302 (2012).

    Article  Google Scholar 

  19. Hansen, N., Muller, S. D. & Koumoutsakos, P. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11, 1–18 (2003).

    Article  Google Scholar 

  20. Lipson, H. & Pollack, J. B. Automatic design and manufacture of robotic lifeforms. Nature 406, 974–978 (2000).

    CAS  Article  Google Scholar 

  21. Oganov, A. R., Lyakhov, A. O. & Valle, M. How evolutionary crystal structure prediction works—and why. Accounts Chem. Res. 44, 227–237 (2011).

    CAS  Article  Google Scholar 

  22. Pöschel, T. & Schwager, T. Computational Granular Dynamics: Models and Algorithms (Springer, 2005).

    Google Scholar 

  23. Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B. & Wassgren, C. Force model considerations for glued-sphere discrete element method simulations. Chem. Eng. Sci. 64, 3466–3475 (2009).

    CAS  Article  Google Scholar 

  24. Tolley, M. T. & Lipson, H. On-line assembly planning for stochastically reconfigurable systems. Int. J. Robot. Res. 30, 1566–1584 (2011).

    Article  Google Scholar 

  25. Arkus, N., Manoharan, V. N. & Brenner, M. P. Minimal energy clusters of hard spheres with short range attractions. Phys. Rev. Lett. 103, 118303 (2009).

    Article  Google Scholar 

  26. Hoy, R. S., Harwayne-Gidansky, J. & O’Hern, C. S. Structure of finite sphere packings via exact enumeration: Implications for colloidal crystal nucleation. Phys. Rev. E 85, 051403 (2012).

    Article  Google Scholar 

  27. Sloane, N. J. A., Hardin, R. H., Duff, T. D. S. & Conway, J. H. Minimal-energy clusters of hard-spheres. Discrete Comput. Geom. 14, 237–259 (1995).

    Article  Google Scholar 

  28. Papanikolaou, S., O’Hern, C. S. & Shattuck, M. D. Isostaticity at frictional jamming. Preprint at (2012).

  29. Potyondy, D. O. & Cundall, P. A. A bonded-particle model for rock. Int. J. Rock Mech. Mining Sci. 41, 1329–1364 (2004).

    Article  Google Scholar 

Download references


We thank E. Brown, J. Ellowitz, S. Nagel, S. Waitukaitis and T. Witten for insightful discussions, and A. Athanassiadis and M. Collins for help with the 3D-printed particles. We would like to acknowledge and thank the Itasca Education Partnership (Itasca Consulting Group) for the contribution of software and technical support. This work was supported by the NSF through its MRSEC program (DMR-0820054) and by the US Army Research Office through grant W911NF-12-1-0182.

Author information

Authors and Affiliations



M.Z.M. and H.M.J. conceived the study and wrote the paper. M.Z.M. created the particle-shape representation, performed the simulations and experiments and analysed the data.

Corresponding author

Correspondence to Marc Z. Miskin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 978 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miskin, M., Jaeger, H. Adapting granular materials through artificial evolution. Nature Mater 12, 326–331 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing