Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-range transfer of electron–phonon coupling in oxide superlattices

Abstract

The electron–phonon interaction is of central importance for the electrical and thermal properties of solids, and its influence on superconductivity, colossal magnetoresistance and other many-body phenomena in correlated-electron materials is the subject of intense research at present. However, the non-local nature of the interactions between valence electrons and lattice ions, often compounded by a plethora of vibrational modes, presents formidable challenges for attempts to experimentally control and theoretically describe the physical properties of complex materials. Here we report a Raman scattering study of the lattice dynamics in superlattices of the high-temperature superconductor YBa2Cu3O7 (YBCO) and the colossal-magnetoresistance compound La2/3Ca1/3MnO3 that suggests a new approach to this problem. We find that a rotational mode of the MnO6 octahedra in La2/3Ca1/3MnO3 experiences pronounced superconductivity-induced line-shape anomalies, which scale linearly with the thickness of the YBCO layers over a remarkably long range of several tens of nanometres. The transfer of the electron–phonon coupling between superlattice layers can be understood as a consequence of long-range Coulomb forces in conjunction with an orbital reconstruction at the interface. The superlattice geometry thus provides new opportunities for controlled modification of the electron–phonon interaction in complex materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Raman spectra of superlattices and reference films.
Figure 2: Temperature-dependent phonon frequencies.
Figure 3: Dependence of the YBCO B1g phonon anomaly on YBCO layer thickness.
Figure 4: Dependence of the LCMO Ag(2) phonon anomaly on YBCO layer thickness.

References

  1. 1

    Mannhart, J. & Schlom, D. G. Oxide interfaces—an opportunity for electronics. Science 327, 1607–1611 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nature Mater. 11, 103–113 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Pentcheva, R. & Pickett, W. E. Avoiding the polarization catastrophe in LaAlO3 overlayers on SrTiO3(001) through polar distortion. Phys. Rev. Lett. 102, 107602 (2009).

    Article  Google Scholar 

  4. 4

    Pauli, S. A. et al. Evolution of the interfacial structure of LaAlO3 on SrTiO3 . Phys. Rev. Lett. 106, 036101 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Butko, V. Y., Logvenov, G., Bozovic, N., Radovic, Z. & Bozovic, I. Madelung strain in cuprate superconductors—a route to enhancement of the critical temperature. Adv. Mater. 21, 3644–3648 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Hoppler, J. et al. Giant superconductivity-induced modulation of the ferromagnetic magnetization in a cuprate–manganite superlattice. Nature Mater. 8, 315–319 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Edwards, D. M. Ferromagnetism and electron–phonon coupling in the manganites. Adv. Phys. 51, 1259–1318 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Dagotto, E., Hotta, T. & Moreo, A. Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep. 344, 1–153 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Gunnarsson, O. & Rösch, O. Interplay between electron–phonon and Coulomb interactions in cuprates. J. Phys. Condens. Matter 20, 043201 (2008).

    Article  Google Scholar 

  10. 10

    Sefrioui, Z. et al. Ferromagnetic/superconducting proximity effect in La0.7Ca0.3MnO3/YBa2Cu3O7−δ superlattices. Phys. Rev. B 67, 214511 (2003).

    Article  Google Scholar 

  11. 11

    Holden, T. et al. Proximity induced metal–insulator transition in YBa2Cu3O7/La2/3Ca1/3MnO3 superlattices. Phys. Rev. B 69, 064505 (2004).

    Article  Google Scholar 

  12. 12

    Soltan, S., Albrecht, J. & Habermeier, H-U. Ferromagnetic/superconducting bilayer structure: A model system for spin diffusion length estimation. Phys. Rev. B 70, 144517 (2004).

    Article  Google Scholar 

  13. 13

    Peña, V. et al. Coupling of superconductors through a half-metallic ferromagnet: Evidence for a long-range proximity effect. Phys. Rev. B 69, 224502 (2004).

    Article  Google Scholar 

  14. 14

    Chakhalian, J. et al. Magnetism at the interface between ferromagnetic and superconducting oxides. Nature Phys. 2, 244–248 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Hoffmann, A. et al. Suppressed magnetization in La0.7Ca0.3MnO3/YBa2Cu3O7−δ superlattices. Phys. Rev. B 72, 140407 (2005).

    Article  Google Scholar 

  16. 16

    Stahn, J. et al. Magnetic proximity effect in perovskite superconductor/ferromagnet multilayers. Phys. Rev. B 71, 140509 (2005).

    Article  Google Scholar 

  17. 17

    Chakhalian, J. et al. Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114–1117 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy . Nature 477, 191–194 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Raichle, M. et al. Highly anisotropic anomaly in the dispersion of the copper–oxygen bond-bending phonon in superconducting YBa2Cu3O7 from inelastic neutron scattering. Phys. Rev. Lett. 107, 177004 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Rivadulla, F. et al. Suppression of ferromagnetic double exchange by vibronic phase segregation. Phys. Rev. Lett. 96, 016402 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Salamon, M. B. & Jaime, M. The physics of manganites: Structure and transport. Rev. Mod. Phys. 73, 583–628 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Irwin, J. C., Chrzanowski, J. & Franck, J. P. Oxygen isotope effect on the vibrational modes of La1−xCaxMnO3 . Phys. Rev. B 59, 9362–9371 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Thomsen, C. et al. Systematic Raman and infrared studies of the superconductor YBa2Cu3O7−x as a function of oxygen concentration (0 ≤ x ≤ 1). Solid State Commun. 65, 55–58 (1988).

    CAS  Article  Google Scholar 

  24. 24

    Altendorf, E. et al. Temperature dependences of the 340-, 440-, and 500-cm−1 Raman modes of YBa2Cu3Oy for 6.7 < y < 7.0. Phys. Rev. B 47, 8140–8150 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Klein, M. V. in Light Scattering in Solids I (ed. Cardona, M.) (Springer, 1983).

    Google Scholar 

  26. 26

    Friedl, B., Thomsen, C. & Cardona, M. Determination of the superconducting gap in RBa2Cu3O7−δ . Phys. Rev. Lett. 65, 915–918 (1990).

    CAS  Article  Google Scholar 

  27. 27

    Bakr, M. et al. Electronic and phononic Raman scattering in detwinned YBa2Cu3O6.95 and Y0.85Ca0.15Ba2Cu3O6.95: s-wave admixture to the d x 2 − y 2 -wave order parameter. Phys. Rev. B 80, 064505 (2009).

    Article  Google Scholar 

  28. 28

    Dai, P. et al. Experimental evidence for the dynamic Jahn–Teller effect in La0.65Ca0.35MnO3 . Phys. Rev. B 54, R3694–R3697 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Granado, E. et al. Phonon Raman scattering in R1−xAxMnO3+δ (R = La,Pr;A = Ca,Sr). Phys. Rev. B 58, 11435–11440 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Liarokapis, E. et al. Local lattice distortions and Raman spectra in the La1−xCaxMnO3 system. Phys. Rev. B 60, 12758–12763 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Antonakos, A., Liarokapis, E., Aydogdu, G. H. & Habermeier, H-U. Strain effects on La0.5Ca0.5MnO3 thin films. Mater. Sci. Eng. B 144, 83–88 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Granado, E. et al. Magnetic ordering effects in the Raman spectra of La1−xMn1−xO3 . Phys. Rev. B 60, 11879–11882 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Laverdiere, J. et al. Spin–phonon coupling in orthorhombic RMnO3 (R = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y): A Raman study. Phys. Rev. B 73, 214301 (2006).

    Article  Google Scholar 

  34. 34

    Issing, S. et al. Composition-dependent spin–phonon coupling in mixed crystals of the multiferroic manganite Eu1−xYxMnO3 (0 ≤ x ≤ 0.5) studied by Raman spectroscopy. Phys. Rev. B 81, 024304 (2010).

    Article  Google Scholar 

  35. 35

    Takazawa, A. et al. Investigation of phonon anomaly in the orbital order state of La1−xSrxMnO3 (x~1/8). J. Phys. Soc. Jpn 70, 902–910 (2001).

    CAS  Article  Google Scholar 

  36. 36

    Litvinchuk, A. P., Thomsen, C., Trofimov, I. E., Habermeier, H-U. & Cardona, M. Raman study of YBa2Cu3O7−δ − PrBa2Cu3O7−δ superlattices. Phys. Rev. B 46, 14017–14021 (1992).

    CAS  Article  Google Scholar 

  37. 37

    Ham, K-M. et al. Raman-active phonons in thin a- and c-axis-oriented (YBa2Cu3O7)m − (PrBa2Cu3O7)n superlattices. Phys. Rev. B 50, 16598–16605 (1994).

    CAS  Article  Google Scholar 

  38. 38

    Bohnen, K-P., Heid, R. & Krauss, M. Phonon dispersion and electron–phonon interaction for YBa2Cu3O7 from first-principles calculations. Europhys. Lett. 64, 104–110 (2003).

    CAS  Article  Google Scholar 

  39. 39

    Heid, R., Zeyher, R., Manske, D. & Bohnen, K-P. Phonon-induced pairing interaction in YBa2Cu3O7 within the local-density approximation. Phys. Rev. B 80, 024507 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

Part of this research project has been supported by the European Commission under the 7th Framework Programme Marie Curie action SOPRANO project (Grant No. PITNGA-2008-214040), and by the German Science Foundation under SFB/TRR 80. We are grateful to A. Frano and P. Wochner for discussions and technical assistance.

Author information

Affiliations

Authors

Contributions

N.D. and S.B-C. contributed equally to this work. L.M., K.K., G.C., S.S. and H-U.H. provided the superlattices. N.D. and S.B-C. performed the sample characterization and the Raman experiments. N.D., S.B-C. and M.L.T. analysed the data. M.B., M.K. and C.U. participated in the Raman measurements and analysis. G.K. contributed to the discussion and interpretation of the results. M.L.T. and B.K. wrote the manuscript. M.L.T., C.U. and B.K. supervised the project.

Corresponding authors

Correspondence to M. Bakr or M. Khalid or M. Le Tacon or B. Keimer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1740 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Driza, N., Blanco-Canosa, S., Bakr, M. et al. Long-range transfer of electron–phonon coupling in oxide superlattices. Nature Mater 11, 675–681 (2012). https://doi.org/10.1038/nmat3378

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing