Commentary | Published:

Photonic design principles for ultrahigh-efficiency photovoltaics

Nature Materials volume 11, pages 174177 (2012) | Download Citation

For decades, solar-cell efficiencies have remained below the thermodynamic limits. However, new approaches to light management that systematically minimize thermodynamic losses will enable ultrahigh efficiencies previously considered impossible.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & Prog. Photovolt. Res. Appl. 20, 12–20 (2012).

  2. 2.

    in Renewable Energy and the Environment SRWB3 (OSA Technical Digest, 2011).

  3. 3.

    Technology Roadmap — Solar Photovoltaic Energy (International Energy Agency, 2010);

  4. 4.

    & J. Appl. Phys. 32, 510–519 (1961).

  5. 5.

    Third-generation Photovoltaics: Advanced Solar Energy Conversion (Springer, 2006).

  6. 6.

    & Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization (Institute of Physics, 2003).

  7. 7.

    & J. Appl. Phys. 51, R1–R20 (1980).

  8. 8.

    & IEEE Trans. Electron. Dev. 27, 877–882 (1980).

  9. 9.

    Physica E 14, 18–26 (2002).

  10. 10.

    & IEEE Trans. Elec. Dev. 33, 234–239 (1986).

  11. 11.

    & Solar Energy Mater. Solar Cells 33, 213–240 (1994).

  12. 12.

    , , & IEEE Trans. Electron. Dev. 31, 711–716 (1984).

  13. 13.

    J. Opt. Soc. Am. 72, 899–907 (1982).

  14. 14.

    , & Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).

  15. 15.

    , & Nano Lett. 12, 214 (2011).

  16. 16.

    Solar Energy Mater. Solar Cells 23, 152–163 (1991).

  17. 17.

    & Nature Mater. 9, 205–213 (2010).

  18. 18.

    et al. Appl. Phys. Lett. 99, 151113 (2011).

  19. 19.

    , , & Nature Photon. 2, 161–164 (2008).

  20. 20.

    , & ACS Nano (2012).

  21. 21.

    , & Nature Commun. (in the press).

  22. 22.

    et al. Nano Lett. 11, 4239–4245 (2011).

  23. 23.

    & Solar Energy Mater. Solar Cells 84, 19–69 (2004).

  24. 24.

    et al. Prog. Photovolt. Res. Appl. 17, 75–83 (2009).

  25. 25.

    & Prog. Photovolt. Res. Appl. 18, 42–47 (2010).

  26. 26.

    , , , & Appl. Phys. Lett. 56, 2419–2421 (1990).

  27. 27.

    et al. Nature 465, 329–333 (2010).

Download references

Acknowledgements

The authors acknowledge helpful discussions with Eli Yablonovitch, John Rogers, Paul Braun, Nathan S. Lewis, Ralph Nuzzo and Enrique Canovas. The Caltech portion of this work was supported by DOE Office of Basic Energy Sciences 'Light–Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293. Work at AMOLF is part of the research programme of FOM which is financially supported by NWO; it is also supported by the European Research Council. This work is also part of the Global Climate and Energy Project (GCEP).

Author information

Affiliations

  1. Albert Polman is in the FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands

    • Albert Polman
  2. Harry A. Atwater is in the California Institute of Technology, Pasadena California 91125, USA

    • Harry A. Atwater

Authors

  1. Search for Albert Polman in:

  2. Search for Harry A. Atwater in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Albert Polman or Harry A. Atwater.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nmat3263

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing