Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Josephson supercurrent through a topological insulator surface state

A Corrigendum to this article was published on 16 December 2012

This article has been updated


The long-sought yet elusive Majorana fermion1 is predicted to arise from a combination of a superconductor and a topological insulator2,3,4. An essential step in the hunt for this emergent particle is the unequivocal observation of supercurrent in a topological phase. Here, direct evidence for Josephson supercurrents in superconductor (Nb)–topological insulator (Bi2Te3)–superconductor electron-beam fabricated junctions is provided by the observation of clear Shapiro steps under microwave irradiation, and a Fraunhofer-type dependence of the critical current on magnetic field. Shubnikov–de Haas oscillations in magnetic fields up to 30 T reveal a topologically non-trivial two-dimensional surface state. This surface state is attributed to mediate the ballistic Josephson current despite the fact that the normal state transport is dominated by diffusive bulk conductivity. The lateral Nb–Bi2Te3–Nb junctions hence provide prospects for the realization of devices supporting Majorana fermions5.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: E-beam lithographically defined Nb electrodes on exfoliated Bi2Te3.
Figure 2: Magnetoresistance oscillations of the Bi2Te3 surface states.
Figure 3: Josephson effects.
Figure 4: Temperature and length dependence of the critical current; demonstration of the ballistic nature of the junctions.

Change history

  • 01 March 2012

    In the version of this Letter originally published online, the name of the eighth author was represented incorrectly; it should have read W. G. van der Wiel. This error has been corrected in all versions of the Letter.

  • 20 December 2012

    In the version of this Letter originally published, in Fig. 2b, the label on the y axis should have been 'mΩ'. On page 1, the section beginning "Now the existence of the topological surface states..." in the second paragraph has been rephrased. These errors have been corrected in the HTML and PDF versions.


  1. Majorana, E. Teoria simmetrica dellelettrone e del positrone. Nuovo Cimento 14, 171–184 (1937).

    Article  CAS  Google Scholar 

  2. Fu, L., Kane, C. L. & Mele, E. J. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  Google Scholar 

  3. Nilsson, J., Akhmerov, A. R. & Beenakker, C. W. J. Splitting of a Cooper pair by a pair of Majorana bound states. Phys. Rev. Lett. 101, 120403 (2008).

    Article  Google Scholar 

  4. Tanaka, Y., Yokoyama, T. & Nagaosa, N. Manipulation of the Majorana fermion, Andreev reflection, and Josephson current on topological insulators. Phys. Rev. Lett. 103, 107002 (2009).

    Article  Google Scholar 

  5. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  6. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  CAS  Google Scholar 

  7. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  Google Scholar 

  8. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  Google Scholar 

  9. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  CAS  Google Scholar 

  10. Zhang, H. et al. Topological insulators Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  11. Qi, X. L., Rundong, L., Zang, J. & Zhang, S. C. Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187 (2009).

    Article  CAS  Google Scholar 

  12. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    Article  CAS  Google Scholar 

  13. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2008).

    Article  Google Scholar 

  14. Peng, H. et al. Aharonov–Bohm interference in topological insulator nanoribbons. Nature Mater. 9, 225–229 (2010).

    Article  CAS  Google Scholar 

  15. Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 103, 266803 (2009).

    Article  Google Scholar 

  16. Cheng, P. et al. Landau quantization of topological surface states in Bi2Se3 . Phys. Rev. Lett. 105, 076801 (2010).

    Article  Google Scholar 

  17. Qu, D. X., Hor, Y. S., Xiong, J., Cava, R. J. & Ong, N. P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3 . Science 329, 821–824 (2010).

    Article  CAS  Google Scholar 

  18. Xiu, F. et al. Manipulating surface states in topological insulator nanoribbons. Nature Nanotech. 6, 216–221 (2011).

    Article  CAS  Google Scholar 

  19. Analytis, J. G. et al. Two-dimensional surface state in the quantum limit of a topological insulator. Nature Phys. 6, 960–964 (2010).

    Article  CAS  Google Scholar 

  20. Xiong, J. et al. Quantum oscillations in a topological insulator Bi2Te2Se2 with large bulk resistivity (6 Ω cm). Physica E (2011).

  21. Taskin, A. A., Ren, Z., Sasaki, S., Segawa, K. & Ando, Y. Observation of Dirac holes and electrons in a topological insulator. Phys. Rev. Lett. 107, 016801 (2011).

    Article  CAS  Google Scholar 

  22. Zhang, D. et al. Observation of the superconducting proximity effect and possible evidence for Pearl vortices in a candidate topological insulator. Phys. Rev. B 84, 165120 (2011).

    Article  Google Scholar 

  23. Sacépé, B. et al. Gate-tuned normal and superconducting transport at the surface of a topological insulator. Nature Commun. 2, 575 (2011).

    Article  Google Scholar 

  24. Li, A. H. et al. Electronic structure and thermoelectric properties of Bi2Te3 crystals and graphene-doped Bi2Te3 . Thin Solid Films 518, 57–60 (2010).

    Article  Google Scholar 

  25. Teweldebrhan, D., Goyal, V., Rahman, M. & Balandin, A. A. Atomically-thin crystalline films and ribbons of bismuth telluride. Appl. Phys. Lett. 96, 053107 (2010).

    Article  Google Scholar 

  26. Lifshitz, I. M. & Kosevich, A. M. Theory of magnetic susceptibility in metals at low temperatures. Sov. Phys. JETP 2, 636–645 (1956).

    Google Scholar 

  27. Brüne, C. et al. Quantum Hall effect from the topological surface states of strained bulk HgTe. Phys. Rev. Lett. 106, 126803 (2011).

    Article  Google Scholar 

  28. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  29. Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  30. Barzykin, V. & Zagoskin, A. M. Coherent transport and nonlocality in mesoscopic SNS junctions: Anomalous magnetic interference patterns. Superlat. Microstruct. 25, 797–807 (1999).

    Article  CAS  Google Scholar 

  31. Brinkman, A. & Golubov, A. A. Coherence effects in double-barrier Josephson junctions. Phys. Rev. B 61, 11297–11300 (2000).

    Article  CAS  Google Scholar 

  32. Galaktionov, A. V. & Zaikin, A. D. Quantum interference and supercurrent in multiple-barrier proximity structures. Phys. Rev. B 65, 184507 (2002).

    Article  Google Scholar 

  33. Dietl, T. Dingle temperature in HgSe. J. Physique Coll. 39, 1081–1083 (1978).

    Google Scholar 

Download references


We acknowledge useful discussions with C. W. J. Beenakker, B. C. Kaas, M. Fuhrer, C. G. Molenaar, L. Molenkamp, N. Nagaosa, Y. V. Nazarov and Y. Tanaka. This work is supported by the Netherlands Organization for Scientific Research (NWO) through VIDI and VICI grants, by the Dutch Foundation for Fundamental Research on Matter, and by the Australian Research Council through a Discovery project.

Author information

Authors and Affiliations



M.V. designed, fabricated and measured the devices. M.S. and M.H. contributed to the fabrication. X.L.W. supplied the crystals. V.K.G. and T.G. contributed to the measurements. M.V., U.Z., W.G.v.d.W., A.A.G., H.H. and A.B. analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to H. Hilgenkamp or A. Brinkman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 329 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Veldhorst, M., Snelder, M., Hoek, M. et al. Josephson supercurrent through a topological insulator surface state. Nature Mater 11, 417–421 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing