Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors


Boosting large-scale superconductor applications require nanostructured conductors with artificial pinning centres immobilizing quantized vortices at high temperature and magnetic fields. Here we demonstrate a highly effective mechanism of artificial pinning centres in solution-derived high-temperature superconductor nanocomposites through generation of nanostrained regions where Cooper pair formation is suppressed. The nanostrained regions identified from transmission electron microscopy devise a very high concentration of partial dislocations associated with intergrowths generated between the randomly oriented nanodots and the epitaxial YBa2Cu3O7 matrix. Consequently, an outstanding vortex-pinning enhancement correlated to the nanostrain is demonstrated for four types of randomly oriented nanodot, and a unique evolution towards an isotropic vortex-pinning behaviour, even in the effective anisotropy, is achieved as the nanostrain turns isotropic. We suggest a new vortex-pinning mechanism based on the bond-contraction pairing model, where pair formation is quenched under tensile strain, forming new and effective core-pinning regions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: XRD analysis to quantify the random and epitaxial fraction of nanodots in the nanocomposite films.
Figure 2: Nanostrain analysis of the nanocomposite films by X-ray diffraction line-broadening analysis.
Figure 3: Cross-sectional STEM micrograph of a YBCO nanocomposite thin film grown on STO along the [010] zone axis.
Figure 4: Strain maps determined by Peak Pairs Analysis of cross-sectional STEM images showing intergrowths.
Figure 5: Scaling of the pinning force and the mass anisotropy with the nanostrain.
Figure 6: High-field magnetoresistance measurements of Hc2 anisotropy in a 13 mol% BZO nanocomposite.


  1. Campbell, A. M. & Evetts, J. E. Flux vortices and transport currents in type II superconductors. Adv. Phys. 21, 199–428 (1972).

    Article  CAS  Google Scholar 

  2. Gutiérrez, J. et al. Strong isotropic flux pinning in solution-derived YBa2Cu3O7−x nanocomposite superconductor films. Nature Mater. 6, 367–373 (2007).

    Article  Google Scholar 

  3. Macmanus-Driscoll, J. L. et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7−x+ BaZrO3 . Nature Mater. 3, 439–443 (2004).

    Article  CAS  Google Scholar 

  4. Obradors, X. et al. in Comprehensive Nanoscience and Technology (eds Andrews, D., Scholes, G. & Wiederrecht, G.) (Elsevier, 2010).

    Google Scholar 

  5. Matsumoto, K. & Mele, P. Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors. Supercond. Sci. Technol. 23, 014001 (2010).

    Article  Google Scholar 

  6. Foltyn, S. R. et al. Materials science challenges for high-temperature superconducting wire. Nature Mater. 6, 631–642 (2007).

    Article  CAS  Google Scholar 

  7. Kang, S. et al. High-performance high- Tc superconducting wires. Science 311, 1911–1914 (2006).

    Article  CAS  Google Scholar 

  8. Goyal, A. et al. Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7−δ films. Supercond. Sci. Technol. 18, 1533–1538 (2005).

    Article  CAS  Google Scholar 

  9. Haugan, T., Barnes, P. N., Wheeler, R., Meisenkothen, F. & Sumption, M. Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3Ox superconductor. Nature 430, 867–870 (2004).

    Article  CAS  Google Scholar 

  10. Blatter, G., Feigelman, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  CAS  Google Scholar 

  11. Teichert, C. Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Rep. Rev. Sec. Phys. Lett. 365, 335–432 (2002).

    CAS  Google Scholar 

  12. MacManus-Driscoll, J. L. Self-assembled heteroepitaxial oxide nanocomposite thin film structures: Designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035–2045 (2010).

    Article  CAS  Google Scholar 

  13. Mele, P. et al. Ultra-high flux pinning properties of BaMO3-doped YBa2Cu3O7−x thin films (M=Zr, Sn). Supercond. Sci. Technol. 21, 032002 (2008).

    Article  Google Scholar 

  14. Puig, T. et al. Vortex pinning in chemical solution nanostructured YBCO films. Supercond. Sci. Technol. 21, 034008 (2008).

    Article  Google Scholar 

  15. Van der Laan, D. C., Haugan, T. J. & Barnes, P. N. Effect of a compressive uniaxial strain on the critical current density of grain boundaries in superconducting YBa2Cu3O7−δ films. Phys. Rev. Lett. 103, 027005 (2009).

    Article  CAS  Google Scholar 

  16. Van der Laan, D. C. et al. Effect of strain, magnetic field and field angle on the critical current density of YBa2Cu3O7−δ coated conductors. Supercond. Sci. Technol. 23, 072001 (2010).

    Article  Google Scholar 

  17. Deutscher, G. & de Gennes, P. G. A spatial interpretation of emerging superconductivity in lightly doped cuprates. C.R. Phys. 8, 937–941 (2007).

    Article  CAS  Google Scholar 

  18. Deutscher, G. Origin of weak-link behavior of grain boundaries in superconducting cuprates and pnictides. Appl. Phys. Lett. 96, 122502 (2010).

    Article  Google Scholar 

  19. Birkholz, M. Thin Film Analysis by X-ray Scattering (Wiley–VCH, 2006).

    Google Scholar 

  20. Lutterotti, L.

  21. Abellán, P. et al. Interaction between solution derived BaZrO3 nanodot interfacial templates and YBa2Cu3O7 films leading to enhanced critical currents. Acta Mater. 59, 2075–2082 (2011).

    Article  Google Scholar 

  22. Gutierrez, J. et al. Anisotropic c axis pinning in interfacial self-assembled nanostructured trifluoracetate–YBa2Cu3O7−x films. Appl. Phys. Lett. 94, 172513 (2009).

    Article  Google Scholar 

  23. Gutierrez, J. et al. The role of stacking faults in the critical current density of MOD films through a thickness dependence study. Supercond. Sci. Technol. 22, 015022 (2009).

    Article  Google Scholar 

  24. Holesinger, T. G. et al. Progress in nanoengineered microstructures for tunable high-current, high-temperature superconducting wires. Adv. Mater. 20, 391–407 (2008).

    Article  CAS  Google Scholar 

  25. Gibert, M. et al. Self-organized Ce1−xGdxO2−y nanowire networks with very fast coarsening driven by attractive elastic interactions. Small 6, 2716–2724 (2010).

    Article  CAS  Google Scholar 

  26. Ramesh, R., Jin, S. & Marsh, P. Superconductor defect structure. Nature 346, 420–420 (1990).

    Article  CAS  Google Scholar 

  27. Galindo, P. L. et al. The Peak Pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107, 1186–1193 (2007).

    Article  CAS  Google Scholar 

  28. Plain, J., Puig, T., Sandiumenge, F., Obradors, X. & Rabier, J. Microstructural influence on critical currents and irreversibility line in melt-textured YBa2Cu3O7−x reannealed at high oxygen pressure. Phys. Rev. B 65, 104526 (2002).

    Article  Google Scholar 

  29. Gutierrez, J., Puig, T. & Obradors, X. Anisotropy and strength of vortex pinning centers in YBa2Cu3O7−x coated conductors. Appl. Phys. Lett. 90, 162514 (2007).

    Article  Google Scholar 

  30. Ando, Y. et al. Resistive upper critical fields and irreversibility lines of optimally doped high- Tc cuprates. Phys. Rev. B 60, 12475–12479 (1999).

    Article  CAS  Google Scholar 

  31. Miura, M. et al. Vortex liquid–glass transition up to 60 T in nanoengineered coated conductors grown by metal organic deposition. Appl. Phys. Lett. 96, 072506 (2010).

    Article  Google Scholar 

  32. Welp, U. et al. Effect of uniaxial-stress on the superconducting transition in YBa2Cu3O7 . Phys. Rev. Lett. 69, 2130–2133 (1992).

    Article  CAS  Google Scholar 

  33. Chisholm, M. F. & Pennycook, S. J. Structural origin of reduced critical currents at YBa2Cu3O7−δ grain-boundaries. Nature 351, 47–49 (1991).

    Article  CAS  Google Scholar 

  34. Ye, J. H. & Nakamura, K. Quantitative structure analyses of YBa2Cu3O7−δ thin-films—determination of oxygen-content from X-ray-diffraction patterns. Phys. Rev. B 48, 7554–7564 (1993).

    Article  CAS  Google Scholar 

  35. Klie, R. F. et al. Enhanced current transport at grain boundaries in high- Tc superconductors. Nature 435, 475–478 (2005).

    Article  CAS  Google Scholar 

  36. Hilgenkamp, H. & Mannhart, J. Grain boundaries in high- Tc superconductors. Rev. Mod. Phys. 74, 485–549 (2002).

    Article  CAS  Google Scholar 

  37. Heinig, N. F., Redwing, R. D., Nordman, J. E. & Larbalestier, D. C. Strong to weak coupling transition in low misorientation angle thin film YBa2Cu3O7−x bicrystals. Phys. Rev. B 60, 1409–1417 (1999).

    Article  CAS  Google Scholar 

  38. Obradors, X. et al. Progress towards all-chemical superconducting YBa2Cu3O7 coated conductors. Supercond. Sci. Technol. 19, S1–S14 (2006).

    Article  Google Scholar 

  39. Zalamova, K. et al. Smooth stress relief of trifluoroacetate metal–organic solutions for YBa2Cu3O7 film growth. Chem. Mater. 18, 5897–5906 (2006).

    Article  CAS  Google Scholar 

  40. Puig, T. et al. Influence of growth conditions on the microstructure and critical currents of TFA-MOD YBa2Cu3O7 films. Supercond. Sci. Technol. 18, 1141–1150 (2005).

    Article  CAS  Google Scholar 

Download references


The authors would like to thank the Ministerio Ciencia e Innovación (MAT2008-01022), Consolider NANOSELECT (CSD2007-00041), Generalitat de Catalunya (2009 SGR 770 and Xarmae) and the European Union (HIPERCHEM, NESPA and the European Research Council Starting Investigator Award). Work at Oak Ridge National Laboratory was supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (M.V.). One of us (G.D.) acknowledges partial support from US Air Force grant FA 8655-10-1-3011. Work at Instituto Nanociencia Aragón—Laboratorio Microscopías Avanzadas was partially supported by NanoAraCat.

Author information

Authors and Affiliations



A.L., M.C., R.V., S.Y. and S.R. carried out the synthesis and basic structural characterization of the materials; A.L. and D.C. carried out the advanced analysis of texture and nanostrain of the films through X-ray diffraction; A. Palau, A. Pomar and V.R. made and analysed magnetic and transport measurements; A. Palau, J. Gutiérrez, J.V. and V.M. were in charge of the high-magnetic-field measurements and the corresponding data analysis; J. Gázquez, J.A., R.G., F.S., M.V. and C.M. made different contributions to the TEM observations and the corresponding image analysis and interpretation; G.D. was involved in the theoretical analysis and contributed to the interpretation of the experimental data; A.L. and J. Gázquez wrote parts of the Supplementary Information; T.P. and X.O. designed and supervised the experiments and the theoretical analysis, coordinated the data interpretation and wrote the manuscript. All the authors participated in the correction of the manuscript.

Corresponding author

Correspondence to X. Obradors.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2544 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Llordés, A., Palau, A., Gázquez, J. et al. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nature Mater 11, 329–336 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing