Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical control of the ferromagnetic phase transition in cobalt at room temperature


Electrical control of magnetic properties is crucial for device applicationsin the field of spintronics1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20. Although the magnetic coercivity or anisotropy has been successfully controlled electrically in metals 9,15,17 as well as in semiconductors6,10,11,13, the electrical control of Curie temperature has been realized only in semiconductors at low temperature4,5,8. Here, we demonstrate the room-temperature electrical control of the ferromagnetic phase transition in cobalt, one of the most representative transition-metal ferromagnets. Solid-state field effect devices consisting of a ultrathin cobalt film21,22 covered by a dielectric layer and a gate electrode were fabricated. We prove that the Curie temperature of cobalt can be changed by up to 12 K by applying a gate electric field of about ±2 MV cm−1. The two-dimensionality of the cobalt film may be relevant to our observations. The demonstrated electric field effect in the ferromagnetic metal at room temperature is a significant step towards realizing future low-power magnetic applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Switching of ferromagnetism by electric field at room temperature and measurement configuration.
Figure 2: Magnetization curves under gate voltages obtained by using the anomalous Hall effect.
Figure 3: Arrott plots.
Figure 4: Temperature dependences of spontaneous Hall resistance under gate voltages and Curie temperatures as a function of gate voltage.


  1. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, 1–7 (1996).

    Article  Google Scholar 

  2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  3. Novosad, V. et al. Novel magnetostrictive memory device. J. Appl. Phys. 87, 6400–6402 (2000).

    Article  CAS  Google Scholar 

  4. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  5. Boukari, H. et al. Light and electric field control of ferromagnetism in magnetic quantum structures. Phys. Rev. Lett. 88, 207204 (2002).

    Article  CAS  Google Scholar 

  6. Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003).

    Article  CAS  Google Scholar 

  7. Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004).

    Article  CAS  Google Scholar 

  8. Chiba, D., Matsukura, F. & Ohno, H. Electric-field control of ferromagnetism in (Ga,Mn)As. Appl. Phys. Lett. 89, 162505 (2006).

    Article  Google Scholar 

  9. Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    Article  CAS  Google Scholar 

  10. Goennenwein, S. T. B. et al. Piezo-voltage control of magnetization orientation in a ferromagnetic semiconductor. Phys. Status Solidi 2, 96–98 (2008).

    CAS  Google Scholar 

  11. Overby, M., Chernyshov, A., Rokhinson, L. P., Liu, X. & Furdyna, J. K. GaMnAs based hybrid multiferroic memory device. Appl. Phys. Lett. 92, 192501 (2008).

    Article  Google Scholar 

  12. Chu, Y-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008).

    Article  CAS  Google Scholar 

  13. Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008).

    Article  CAS  Google Scholar 

  14. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  15. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotech. 4, 158–161 (2009).

    Article  CAS  Google Scholar 

  16. Saito, M., Ishikawa, K., Konno, S., Taniguchi, K. & Arima, T. Periodic rotation of magnetization in a non-centrosymmetric soft magnet induced by an electric field. Nature Mater. 8, 634–638 (2009).

    Article  CAS  Google Scholar 

  17. Endo, M., Kanai, S., Ikeda, S., Matsukura, F. & Ohno, H. Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96, 212503 (2010).

    Article  Google Scholar 

  18. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  19. Gerhard, L. et al. Magnetoelectric coupling at metal surfaces. Nature Nanotech. 5, 792–797 (2010).

    Article  CAS  Google Scholar 

  20. Yamada, Y. et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065–1067 (2011).

    Article  CAS  Google Scholar 

  21. Schneider, C. M. et al. Curie temperature of ultrathin films of fcc-cobalt epitaxially grown on atomically flat Cu(100) surfaces. Phys. Rev. Lett. 64, 1059–1062 (1990).

    Article  CAS  Google Scholar 

  22. Huang, F., Mankey, G. J., Kief, M. T. & Willis, R. F. Finite-size scaling behavior of ferromagnetic thin films. J. Appl. Phys. 73, 6760–6762 (1993).

    Article  CAS  Google Scholar 

  23. Carcia, P. F. Perpendicular magnetic anisotropy in Pd/Co and Pt/Co thin-film layered structures. J. Appl. Phys. 63, 5066–5073 (1988).

    Article  CAS  Google Scholar 

  24. Wutting, M & Liu, X. Ultrathin Metal Films 61–124 (Springer, 2004).

    Google Scholar 

  25. Takahashi, C., Ogura, M. & Akai, H. First-principles calculation of the Curie temperature Slater–Pauling curve. J. Phys. Condens. Matter 19, 365233 (2007).

    Article  CAS  Google Scholar 

  26. Jarlborg, T. & Peter, M. Electronic structure, magnetism and Curie temperatures in Fe, Co and Ni. J. Magn. Magn. Mater. 42, 89–99 (1984).

    Article  CAS  Google Scholar 

  27. Onsager, L. Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–148 (1944).

    Article  CAS  Google Scholar 

  28. Bramwell, S. T. & Holdsworth, P. C. W. Magnetization and universal sub-critical behaviour in two-dimensional XY magnets. J. Phys. Condens. Matter 5, L53–L59 (1993).

    Article  Google Scholar 

  29. Bruno, P. Spin-wave theory of two-dimensional ferromagnets in the presence of dipolar interactions and magnetocrystalline anisotropy. Phys.Rev. B 43, 6015–6021 (1991).

    Article  CAS  Google Scholar 

  30. Arrott, A. & Noakes, J. E. Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett. 19, 786–789 (1967).

    Article  CAS  Google Scholar 

  31. Methfessel, S. J. & Holtzberg, F. Magnetic device composed of a semi- conducting ferromagnetic material. US patent 3,271,709 (1966).

Download references


We thank O. Sakae and S. Meguro from NEOARK Corporation for their technical help in the magneto-optical Kerr effect measurement. This work was partly supported by the PRESTO program from JST, Grant-in-Aid for Young Scientists (A) from MEXT, Grant-in-Aid for Scientific Research (S) from JSPS, and research grants from the Murata Science Foundation and the Yazaki Memorial Foundation.

Author information

Authors and Affiliations



D.C. and T.O. planned and supervised the study. S.F. and N.I. provided the films. D.C. fabricated the devices. D.C. and K.S. collected and analysed the data. D.C. wrote the manuscript with input from K.K. and T.O. All authors discussed the results.

Corresponding author

Correspondence to D. Chiba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 829 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chiba, D., Fukami, S., Shimamura, K. et al. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nature Mater 10, 853–856 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing