Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fast control of nuclear spin polarization in an optically pumped single quantum dot


Highly polarized nuclear spins within a semiconductor quantum dot induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin1,2,3,4,5,6,7,8,9,10,11,12, or up to a few hundred mT for the hole spin13,14. Recently this has been recognized as a resource for intrinsic control of quantum-dot-based spin quantum bits. However, only static long-lived Overhauser fields could be used10,11. Here we demonstrate fast redirection on the microsecond timescale of Overhauser fields on the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using coherent control of an ensemble of 105 optically polarized nuclear spins by sequences of short radiofrequency pulses. These results open the way to a new class of experiments using radiofrequency techniques to achieve highly correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame15 leading to sub-μK nuclear spin temperatures, rapid adiabatic passage15, and spin squeezing16.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental techniques used for optically detected NMR (ODNMR) in a single dot.
Figure 2: Rabi oscillations of nuclear spins in a single GaAs dot at Bz=3.55 T excited with a single RF pulse in resonance with 69Ga.
Figure 3: Realization of fast arbitrary rotations of nuclear spin polarization in a dot.
Figure 4: Measurements of the intrinsic (T2) and effective (T2*) spin coherence times in a single GaAs dot for Bz=3.55 T.


  1. Eble, B. et al. Dynamic nuclear polarization of a single charge-tunable InAs/GaAs quantum dot. Phys. Rev. B 74, 081306(R) (2006).

    Article  Google Scholar 

  2. Tartakovskii, A. I. et al. Nuclear spin switch in semiconductor quantum dots. Phys. Rev. Lett. 98, 026806 (2007).

    Article  CAS  Google Scholar 

  3. Chekhovich, E. A. et al. Dynamics of optically induced nuclear spin polarization in individual InP/GaInP quantum dots. Phys. Rev. B 81, 245308 (2010).

    Article  Google Scholar 

  4. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

    Article  CAS  Google Scholar 

  5. Latta, C. et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nature Phys. 5, 758–763 (2009).

    Article  CAS  Google Scholar 

  6. Nikolaenko, A. E. et al. Suppression of nuclear spin diffusion at a GaAs/AlxGa1−xAs interface measured with a single quantum-dot nanoprobe. Phys. Rev. B 79, 081303(R) (2009).

    Article  Google Scholar 

  7. Gammon, D. et al. Nuclear spectroscopy in single quantum dots: Nanoscopic Raman scattering and nuclear magnetic resonance. Science 277, 85–88 (1997).

    Article  Google Scholar 

  8. Makhonin, M. N. et al. Optically tunable nuclear magnetic resonance in a single quantum dot. Phys. Rev. B 82, 161309(R) (2010).

    Article  Google Scholar 

  9. Chekhovich, E. A., Krysa, A. B., Skolnick, M. S. & Tartakovskii, A. I. Direct measurement of the hole-nuclear spin interaction in single InP/GaInP quantum dots using photoluminescence spectroscopy. Phys. Rev. Lett. 106, 027402 (2011).

    Article  CAS  Google Scholar 

  10. Foletti, S., Bluhm, H., Mahalu, D., Umansky, V. & Yacoby, A. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nature Phys. 5, 903–908 (2009).

    Article  CAS  Google Scholar 

  11. Kloeffel, C. et al. Controlling the interaction of electron and nuclear spins in a tunnel-coupled quantum dot. Phys. Rev. Lett. 106, 046802 (2011).

    Article  CAS  Google Scholar 

  12. Kalevich, V. K., Kavokin, K. V. & Merkulov, I. A. in Spin Physics in Semiconductors (ed. Dyakonov, M. I.) (Springer, 2008).

    Google Scholar 

  13. Chekhovich, E. A. et al. Pumping of nuclear spins by optical excitation of spin-forbidden transitions in a quantum dot. Phys. Rev. Lett. 104, 066804 (2010).

    Article  CAS  Google Scholar 

  14. Fallahi, P., Yilmaz, S. T. & Imamoglu, A. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence. Phys. Rev. Lett. 105, 257402 (2010).

    Article  CAS  Google Scholar 

  15. Slichter, C. P. Principles of Magnetic Resonance (Springer, 1990).

    Book  Google Scholar 

  16. Rudner, M. S., Vandersypen, L. M. K., Vuletic, V. & Levitov, L. S. Generating entanglement and squeezed states of nuclear spins in quantum dots. Preprint at (2010).

  17. Erlingsson, S. I., Nazarov, Y. V. & Falko, V. I. Nucleus-mediated spin-flip transitions in GaAs quantum dots. Phys. Rev. B 64, 195306 (2001).

    Article  Google Scholar 

  18. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  Google Scholar 

  19. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  20. Koppens, F. H. L. et al. Control and detection of singlet–triplet mixing in a random nuclear field. Science 309, 1346 (2005).

    Article  CAS  Google Scholar 

  21. Vink, I. T. et al. Locking electron spins into magnetic resonance by electron–nuclear feedback. Nature Phys. 5, 764–768 (2009).

    Article  CAS  Google Scholar 

  22. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Phys. 7, 109 (2011).

    Article  CAS  Google Scholar 

  23. Yusa, G., Muraki, K., Takashina, K., Hashimoto, K. & Hirayama, Y. Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device. Nature 434, 1001 (2005).

    Article  CAS  Google Scholar 

  24. Machida, T., Yamazaki, T., Ikushima, K. & Komiyama, S. Coherent control of nuclear-spin system in a quantum-Hall device. Appl. Phys. Lett. 82, 409 (2003).

    Article  CAS  Google Scholar 

  25. Sanada, H. et al. Optical pump–probe measurements of local nuclear spin coherence in semiconductor quantum wells. Phys. Rev. Lett. 96, 067602 (2006).

    Article  CAS  Google Scholar 

  26. Peter, E. et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).

    Article  CAS  Google Scholar 

  27. Ramsey, N. F. A molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695–699 (1950).

    Article  CAS  Google Scholar 

  28. Abragam, A. Principles of Nuclear Magnetism (Oxford Univ. Press, 1961).

    Google Scholar 

  29. Torrey, H. C. Transient nutations in nuclear magnetic resonance. Phys. Rev. 76, 1059–1068 (1949).

    Article  Google Scholar 

Download references


We thank L. M. K. Vandersypen, V. I. Fal’ko, E. A. Chekhovich and A. D. Andreev for discussions, and D. Martrou for help with the sample growth. This work has been supported by the EPSRC Programme Grant EP/G601642/1, ITN Spin-Optronics and the Royal Society.

Author information

Authors and Affiliations



A.L. and P.S. developed and grew the sample. M.N.M. and A.I.T. conceived the experiments. M.N.M. designed and carried out the experiments. M.N.M, K.V.K. and A.I.T. analysed the data. A.I.T. and M.N.M. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to M. N. Makhonin or A. I. Tartakovskii.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 739 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Makhonin, M., Kavokin, K., Senellart, P. et al. Fast control of nuclear spin polarization in an optically pumped single quantum dot. Nature Mater 10, 844–848 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing