Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Programming magnetic anisotropy in polymeric microactuators

Abstract

Polymeric microcomponents are widely used in microelectromechanical systems (MEMS) and lab-on-a-chip devices, but they suffer from the lack of complex motion, effective addressability and precise shape control1,2. To address these needs, we fabricated polymeric nanocomposite microactuators driven by programmable heterogeneous magnetic anisotropy. Spatially modulated photopatterning3 was applied in a shape-independent manner to microactuator components by successive confinement of self-assembled magnetic nanoparticles in a fixed polymer matrix. By freely programming the rotational axis of each component, we demonstrate that the polymeric microactuators can undergo predesigned, complex two- and three-dimensional motion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of the fabrication of polymeric magnetic microactuators.
Figure 2: Various types of actuation using programmable magnetic anisotropy.
Figure 3: Polymeric micro-looper.

References

  1. 1

    Wilson, S. A. et al. New materials for micro-scale sensors and actuators. An engineering review. Mater. Sci. Eng. 56, 1–129 (2007).

    Article  Google Scholar 

  2. 2

    Winey, K. I. & Vaia, R. A. Polymer nanocomposites. MRS Bull. 32, 314–319 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Kim, H. et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nature Photon. 3, 534–540 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Jager, E. W. H., Smela, E. & Inganas, O. Microfabicating conjugated polymer actuators. Science 290, 1540–1544 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Oosten, C. L., Bastiaansen, C. W. M. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature Mater. 8, 677–682 (2009).

    Article  Google Scholar 

  6. 6

    Yu, Y. & Ikeda, T. Soft actuator based on liquid-crystalline elastomers. Angew. Chem. Int. Edn. 45, 5416–5418 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Moniruzzman, M. & Winey, K. I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006).

    Article  Google Scholar 

  8. 8

    Saito, S. et al. Development of a soft actuator using a photocurable ionic gel. J. Micromech. Microeng. 19, 035005 (2009).

    Article  Google Scholar 

  9. 9

    Smela, E. Conjugated polymer actuators for biomedical applications. Adv. Mater. 6, 481–494 (2003).

    Article  Google Scholar 

  10. 10

    Cugat, O., Delamare, J. & Reyne, G. Magnetic micro-actuators and systems (MAGMAS). IEEE Trans. Magn. 39, 3607–3612 (2003).

    Article  Google Scholar 

  11. 11

    Fulcrand, R. et al. Development of a flexible microfluidic system integrating magnetic micro-actuators for trapping biological species. J. Micromech. Microeng. 19, 105019 (2009).

    Article  Google Scholar 

  12. 12

    Allegra, G., Raos, G. & Vacatello, M. Theories and simulations of polymer-based nanocomposites: From chain statistics to reinforcement. Prog. Polym. Sci. 33, 683–731 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Yuet, K. P., Hwang, D. K., Haghgooie, R. & Doyle, P. S. Multifunctional superparamagnetic Janus particles. Langmuir 26, 4281–4287 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Damean, N., Parvis, B. A., Lee, J. N., Odom, T. & Whitesides, G. M. Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems. J. Micromech. Microeng. 15, 29–34 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Garstecki, P., Tierno, P., Weibel, D. B., Sagues, F. & Whitesides, G. M. Propulsion of flexible polymer structures in a rotating magnetic field. J. Phys. Condens. Matter 21, 204110 (2009).

    Article  Google Scholar 

  16. 16

    Kim, S-H., Sim, J. Y., Lim, J. M. & Yang, S-M. Magnetoresponsive microparticles with nanoscopic surface structures for remote-controlled locomotion. Angew. Chem. Int. Edn. 49, 3786–3790 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Dyab, A. K. F., Ozmen, M., Ersoz, M. & Paunov, V. N. Fabrication of novel anisotropic magnetic microparticles. J. Mater. Chem. 19, 3475–3481 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Smoukov, S. K., Gangwal, S., Marquez, M. & Velev, O. D. Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter 5, 1285–1292 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Sakar, M. S. et al. Single cell manipulation using ferromagnetic composite microtransporters. Appl. Phys. Lett. 96, 043705 (2010).

    Article  Google Scholar 

  20. 20

    Lee, H., Kim, J., Kim, H., Kim, J. & Kwon, S. Colour-barcoded microparticles for multiplexed bioassays. Nature Mater. 9, 745–749 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Lagorce, L. K., Brand, O. & Allen, M. G. Magnetic microactuators based on polymer magnets. J. Microelectromech. Syst. 8, 2–9 (1999).

    Article  Google Scholar 

  22. 22

    Khoo, M. & Liu, C. Micro magnetic silicon elastomer membrane actuator. Sens. Actuat. A 89, 259–266 (2000).

    Article  Google Scholar 

  23. 23

    Judy, W. J. & Muller, R. S. Magnetic microactuation of torsional polysilicon structures. Sens. Actuat. A A53, 392–396 (1996).

    Article  Google Scholar 

  24. 24

    Judy, W. J & Muller, R. S. Magnetically actuated, addressable microstructures. J. Microelectromech. Syst. 6, 249–256 (1997).

    Article  Google Scholar 

  25. 25

    Zhang, L. et al. Artificial bacterial flagella: Fabrication and magnetic control. Appl. Phys. Lett. 94, 064107 (2009).

    Article  Google Scholar 

  26. 26

    Yellen, B. B. Magnetically Programmable Transport and Assembly of Colloidal Particles. Thesis, Drexel Univ. (2004).

  27. 27

    Ge, J. & Yin, Y. Magnetically tunable colloidal photonic structures in alkanol solutions. Adv. Mater. 20, 3485–3491 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Ge, J. et al. Macnetochromatic microspheres: Rotating photonic crystals. J. Am. Chem. Soc. 131, 15687–15694 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Chung, S. E. et al. Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl. Phys. Lett. 91, 041106 (2007).

    Article  Google Scholar 

  30. 30

    Pregibon, D. C., Toner, M. & Doyle, P. S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315, 1393–1396 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Ge, J. et al. Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. Langmuir 24, 3671–3680 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (2011-0016491), supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (2011-0000545), and supported by Global Frontier Project grant (NRF-M1AXA002-2010-0029797) of the National Research Foundation funded by the Ministry of Education, Science and Technology of Korea.

Author information

Affiliations

Authors

Contributions

Jiyun Kim, S.E. Chung and S.K. designed the experiment. Jiyun Kim and S.E. Chung performed the experiments and analysis. S-E. Choi synthesized the magnetic material and gave key advice for the experimental design. H.L. and Junhoi Kim gave key advice for the experimental design. Junhoi Kim also investigated the magnetic properties of the nanoparticles.

Corresponding author

Correspondence to Sunghoon Kwon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1594 kb)

Supplementary Information

Supplementary Movie (SWF 25857 kb)

Supplementary Information

Supplementary Movie (SWF 24369 kb)

Supplementary Information

Supplementary Movie (SWF 83033 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, J., Chung, S., Choi, SE. et al. Programming magnetic anisotropy in polymeric microactuators. Nature Mater 10, 747–752 (2011). https://doi.org/10.1038/nmat3090

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing