Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local elastic properties of a metallic glass

Abstract

The nature of non-crystalline materials causes the local potential energy of a cluster of atoms or molecules to vary significantly in space. Different configurations of an ensemble of atoms in a metallic glass lead therefore to a distribution of elastic constants which also changes in space. This is totally different to their crystalline counterparts, where a long-range order exists in space and therefore a much more unified elastic modulus is expected. Using atomic force acoustic microscopy, we present data which show that the local so-called indentation modulus M indeed exhibits a wide distribution on a scale below 10 nm in amorphous PdCuSi, with Δ M/M≈30%. About 104 atoms are probed in an individual measurement. Crystallized PdCuSi shows a variation that is 10–30 times smaller and which is determined by the resolution of the microscope and by the polycrystalline structure of the material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maps (C-scans) of contact-resonance frequencies.
Figure 2: Statistics of AFAM data.

Similar content being viewed by others

References

  1. Srolovitz, D., Maeda, K., Vitek, V. & Egami, T. Structural defects in amorphous solids: Statistical analysis of a computer model. Phil. Mag. A41, 847–866 (1981).

    Article  Google Scholar 

  2. Johnson, W. L. & Samwer, K. A universal criterion for plastic yielding of metallic glasses with a (Tf/TG)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    Article  CAS  Google Scholar 

  3. Mayr, S. G. Activation energy of shear transformation zones: A key for understanding rheology of glasses and liquids. Phys. Rev. Lett. 97, 195501 (2006).

    Article  CAS  Google Scholar 

  4. Pan, D., Inoue, A., Sakurai, T. & Chen, M. W. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Natl Acad. Sci. USA 105, 14769–14772 (2008).

    Article  CAS  Google Scholar 

  5. Schwabe, M., Küchemann, S., Wagner, H., Bedorf, D. & Samwer, K. Activation volume of microscopic processes in amorphous Pd77.5Cu6.0Si16.5 due to stress and temperature. J. Non-Cryst. Solids 490–493 (2011).

  6. Bedorf, D. & Samwer, K. Length scale effects on relaxations in metallic glasses. J. Non-Cryst. Solids 356, 340–343 (2010).

    Article  CAS  Google Scholar 

  7. Rabe, U. et al. Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surf. Interface Anal. 33, 65–70 (2002).

    Article  CAS  Google Scholar 

  8. Vlassak, J. J. & Nix, W. D. Indentation modulus of elastically anisotropic half-spaces. Phil. Mag. A 67, 1045–1056 (1993).

    Article  Google Scholar 

  9. Kopycinska-Müller, M. et al. Quantitative evaluation of elastic properties of nanocrystalline nickel using atomic force acoustic microscopy. Z. Phys. Chem. 222, 471–498 (2008).

    Article  Google Scholar 

  10. Yuya, P. A., Hurley, D. C & Turner, J. A. Contact-resonance atomic force microscopy for viscoelasticity. J. Appl. Phys. 104, 077916 (2008).

    Article  Google Scholar 

  11. Caron, A. & Arnold, W. Observation of local internal friction and plasticity onset in nanocrystalline nickel by atomic force acoustic microscopy. Acta Mater. 57, 4353–4363 (2009).

    CAS  Google Scholar 

  12. Liu, L., Pang, S. J., Ma, C. L. & Zhang, T. Effect of minor Au addition on glass-forming ability and mechanical properties of Pd–Cu–Au–Si–P alloys. Mater. Trans. 46, 2945–2948 (2005).

    Article  CAS  Google Scholar 

  13. Johnson, K. L. Contact Mechanics (Cambridge Univ. Press, 1985).

    Book  Google Scholar 

  14. Kumar, A., Rabe, U., Hirsekorn, S. & Arnold, W. Elasticity mapping of precipitates in polycrystalline materials using atomic force acoustic microscopy. Appl. Phys. Lett. 92, 183106 (2008).

    Article  Google Scholar 

  15. Bellessa, G. & Bethoux, O. Sound propagation in amorphous metallic Pd–Si at low temperatures. Phys. Lett. 62A, 125–126 (1977).

    Article  CAS  Google Scholar 

  16. Measurements were carried out by Yuya P. & Turner J. A., Department of Engineering Mechanics, University of Nebraska at Lincoln, NE, USA (2010).

  17. Alexander, S. Amorphous solids: Their structure, lattice dynamics and elasticity. Phys. Rep. 296, 65–236 (1998).

    Article  CAS  Google Scholar 

  18. Stillinger, F. H. & Weber, T. A hidden structure in liquids. Phys. Rev. A 25, 978–989 (1982).

    Article  CAS  Google Scholar 

  19. Stillinger, F. H. A topographic view of supercooled liquids and glass formation. Science 31, 1935–1939 (1995).

    Article  Google Scholar 

  20. Harmon, J. S., Demetriou, M. D., Johnson, W. L. & Samwer, K. Anelastic to plastic transition in metallic glass-forming liquids. Phys. Rev. Lett. 99, 135502 (2007).

    Article  Google Scholar 

  21. Neudecker, M. & Mayr, S. G. Dynamics of shear localization and stress relaxation in amorphous Cu50Ti50 . Acta Mater. 57, 1437–1441 (2009).

    Article  CAS  Google Scholar 

  22. Egami, T. & Srolovitz, D. Local structural fluctuations in amorphous and liquid metals: A simple theory of the glass transition. J. Phys. F 12, 2141–2163 (1982).

    Article  CAS  Google Scholar 

  23. Tsamados, M., Tanguy, A., Goldenberg, C. & Barat, J. L. Local elasticity map and plasticity in a model Lenard–Jones glass. Phys. Rev. E 80, 026112 (2009).

    Article  Google Scholar 

  24. Greenwood, J. A. & Tripp, J. H. The elastic contact of rough spheres. Trans. ASME, J. Appl. Mech. 34, 153–159 (1967).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Yuya and J. Turner, University of Nebraska at Lincoln, for carrying out nano-indentation measurements on our PdCuSi samples. B.Z. thanks the Alexander von Humboldt Foundation for support with a post-doctoral fellowship. W.A. thanks M. Kopycinska-Müller for discussions. This work was supported by the German Science Foundation within the ‘SFB 602’ and the Leibniz-Program (Sa 337/10-1).

Author information

Authors and Affiliations

Authors

Contributions

H.W. carried out the experiments, analysed the data, and contributed to writing the paper. W.A. devised the experiment, wrote part of the paper, and analysed the data. S.K. provide the global elastic data. D.B. wrote part of the paper and analysed the data. M.S. prepared the samples. B.Z. continued with the measurement after H.W. left. K.S. wrote part of the paper and supervised the team.

Corresponding author

Correspondence to Konrad Samwer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, H., Bedorf, D., Küchemann, S. et al. Local elastic properties of a metallic glass. Nature Mater 10, 439–442 (2011). https://doi.org/10.1038/nmat3024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3024

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing