Letter | Published:

Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy

Nature Materials volume 10, pages 273277 (2011) | Download Citation

Abstract

Pairing symmetry is a fundamental property that characterizes a superconductor. For the iron-based high-temperature superconductors1,2, an s±-wave pairing symmetry has received increasing experimental3,4,5,6,7,8,9,10,11 and theoretical12,13,14,15,16,17,18,19,20,21 support. More specifically, the superconducting order parameter is an isotropic s-wave type around a particular Fermi surface, but it has opposite signs between the hole Fermi surfaces at the zone centre and the electron Fermi surfaces at the zone corners. Here we report the low-energy electronic structure of the newly discovered superconductors, AxFe2Se2 (A=K,Cs) with a superconducting transition temperature (Tc) of about 30 K. We found AxFe2Se2 (A=K,Cs) is the most heavily electron-doped among all iron-based superconductors. Large electron Fermi surfaces are observed around the zone corners, with an almost isotropic superconducting gap of ~10.3 meV, whereas there is no hole Fermi surface near the zone centre, which demonstrates that interband scattering or Fermi surface nesting is not a necessary ingredient for the unconventional superconductivity in iron-based superconductors. Thus, the sign change in the s± pairing symmetry driven by the interband scattering as suggested in many weak coupling theories12 becomes conceptually irrelevant in describing the superconducting state here. A more conventional s-wave pairing is probably a better description.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with Tc=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

  2. 2.

    et al. Superconductivity at 43 K in SmFeAsO1−xFx. Nature 453, 761–762 (2008).

  3. 3.

    et al. Observation of Fermi-surface-independent nodeless superconducting gaps in Ba0.6K0.4Fe2As2. Europhys. Lett. 83, 47001 (2008).

  4. 4.

    et al. Fermi surface nesting induced strong pairing in iron-based superconductors. Proc. Natl Acad. Sci. USA 106, 7330–7333 (2009).

  5. 5.

    et al. Out-of-plane momentum and symmetry dependent superconducting gap in Ba0.6K0.4Fe2As2. Phys. Rev. Lett. 105, 117003 (2010).

  6. 6.

    et al. Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature 456, 930–962 (2008).

  7. 7.

    et al. Spin gap and resonance at the nesting wave vector in superconducting FeSe0.4Te0.6. Phys. Rev. Lett. 103, 067008 (2009).

  8. 8.

    , , & Unconventional s-wave superconductivity in Fe(Se, Te). Science 328, 474–476 (2010).

  9. 9.

    et al. Momentum dependence of the superconducting gap in NdFeAsO0.9F0.1 single crystals measured by angle resolved photoemission spectroscopy. Phys. Rev. Lett. 101, 147003 (2008).

  10. 10.

    et al. Momentum dependence of superconducting gap, strong-coupling dispersion kink, and tightly bound Cooper pairs in the high-Tc(Sr,Ba)1−x(K,Na)xFe2As2 superconductors. Phy. Rev. B 78, 184508 (2008).

  11. 11.

    et al. Superconductivity without nesting in LiFeAs. Phys. Rev. Lett. 105, 067002 (2010).

  12. 12.

    & Pairing symmetry and pairing state in ferropnictides: Theoretical overview. Physica C 469, 614–627 (2009).

  13. 13.

    , & Pairing symmetry in a two-orbital exchange coupling model of oxypnictides. Phys. Rev. Lett. 101, 206404 (2008).

  14. 14.

    et al. A functional renormalization group study of the pairing symmetry and pairing mechanism of the FeAs based high temperature superconductors. Phys. Rev. Lett. 102, 047005 (2009).

  15. 15.

    et al. Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx. Phys. Rev. Lett. 101, 087004 (2008).

  16. 16.

    Anion height as a controlling parameter for the superconductivity in iron pnictides and cuprates. Preprint at  (2010).

  17. 17.

    et al. Functional renormalization-group study of the doping dependence of pairing symmetry in the iron pnictide superconductors. Phys. Rev. B 80, 180505 (2009).

  18. 18.

    , , & Why some iron-based superconductors are nodal while others are nodeless. Preprint at  (2010).

  19. 19.

    , & Spin fluctuations, interband coupling and unconventional pairing in iron-based superconductors. New J. Phys. 11, 025009 (2009).

  20. 20.

    , , , & S-wave superconductivity with orbital dependent sign change in the checkerboard models of iron-based superconductors. Preprint at  (2010).

  21. 21.

    , & A twisted Ladder: Relating the iron superconductors and the high Tc cuprates. Phys. Rev. B 81, 172504 (2010).

  22. 22.

    et al. Band structure and Fermi surface of an extremely overdoped iron-based superconductor KFe2As2. Phys. Rev. Lett. 103, 047002 (2009).

  23. 23.

    et al. Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2. Phys. Rev. Lett. 104, 087005 (2010).

  24. 24.

    et al. The orbital characters of bands in iron-based superconductor BaFe1.85Co0.15As2. (in the press); preprint at .

  25. 25.

    et al. Orbital-dependent modifications of electronic structure across the magnetostructural transition in BaFe2As2. Phys. Rev. Lett. 104, 057002 (2010).

  26. 26.

    et al. Bandwidth and Fermi surface of iron oxypnictides: Covalency and sensitivity to structural changes. Phys. Rev. B 78, 064518 (2008).

  27. 27.

    et al. Superconductivity in the iron selenide KxFe2Se2(0≤x≤1.0). Phys. Rev. B 82, 180520 (2010).

  28. 28.

    et al. Transport properties of the new Fe-based superconductor KxFe2Se2 (Tc=33 K). Appl. Phys. Lett. 98, 042511 (2011).

  29. 29.

    et al. Synthesis and crystal growth of Cs0.8(FeSe0.98)2: A new iron-based superconductor with Tc=27 K. J. Phys. Condens. Matter 23, 052203 (2011).

  30. 30.

    et al. Superconductivity and magnetic properties of high-quality single crystals of AxFe2Se2 (A=K and Cs). Preprint at  (2010).

  31. 31.

    & Electronic structure and Fermi surface of new K intercalated iron selenide superconductor KxFe2Se2. Preprint at  (2010).

  32. 32.

    et al. Electronic structure of Fe1.04Te0.66Se0.34. Phys. Rev. B 81, 014526 (2010).

  33. 33.

    & Electronic structure, topological phase transitions and superconductivity in (K,Cs)xFe2Se2. Pisma ZhETF 93, 182–185 (2011).

  34. 34.

    et al. Absence of holelike Fermi surface in superconducting K0.8Fe1.7Se2 revealed by ARPES. Preprint at  (2010).

Download references

Acknowledgements

This work is supported in part by the National Science Foundation of China, Ministry of Education of China, Science and Technology Committee of Shanghai Municipal, and National Basic Research Program of China (973 Program) under grant Nos. 2011CB921802 and 2011CBA00102.

Author information

Affiliations

  1. State Key Laboratory of Surface Physics, Advanced Materials Laboratory, and Department of Physics, Fudan University, Shanghai 200433, China

    • Y. Zhang
    • , L. X. Yang
    • , M. Xu
    • , Z. R. Ye
    • , F. Chen
    • , C. He
    • , H. C. Xu
    • , J. Jiang
    • , B. P. Xie
    •  & D. L. Feng
  2. Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

    • J. J. Ying
    • , X. F. Wang
    •  & X. H. Chen
  3. Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA

    • J. P. Hu
  4. UVSOR Facility, Institute for Molecular Science and The Graduate University for Advanced Studies, Okazaki 444-8585, Japan

    • M. Matsunami
    •  & S. Kimura

Authors

  1. Search for Y. Zhang in:

  2. Search for L. X. Yang in:

  3. Search for M. Xu in:

  4. Search for Z. R. Ye in:

  5. Search for F. Chen in:

  6. Search for C. He in:

  7. Search for H. C. Xu in:

  8. Search for J. Jiang in:

  9. Search for B. P. Xie in:

  10. Search for J. J. Ying in:

  11. Search for X. F. Wang in:

  12. Search for X. H. Chen in:

  13. Search for J. P. Hu in:

  14. Search for M. Matsunami in:

  15. Search for S. Kimura in:

  16. Search for D. L. Feng in:

Contributions

ARPES measurements were done by Y.Z., L.X.Y., M.X., Z.R.Y., F.C., C.H., H.C.X., J.J. and B.P.X. M.M. and S.K. helped with the experiment at UVSOR. J.J.Y., X.F.W. and X.H.C. provided the samples. Y.Z., L.X.Y. and D.L.F. analysed the ARPES data. J.P.H. and D.L.F wrote the paper. D.L.F. was responsible for project direction, planning and infrastructure.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to D. L. Feng.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat2981

Further reading