Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orbital reflectometry of oxide heterostructures

Abstract

The occupation of d orbitals controls the magnitude and anisotropy of the inter-atomic electron transfer in transition-metal oxides and hence exerts a key influence on their chemical bonding and physical properties1. Atomic-scale modulations of the orbital occupation at surfaces and interfaces are believed to be responsible for massive variations of the magnetic and transport properties2,3,4,5,6,7,8, but could not thus far be probed in a quantitative manner9,10,11. Here we show that it is possible to derive quantitative, spatially resolved orbital polarization profiles from soft-X-ray reflectivity data, without resorting to model calculations. We demonstrate that the method is sensitive enough to resolve differences of 3% in the occupation of Ni eg orbitals in adjacent atomic layers of a LaNiO3–LaAlO3 superlattice, in good agreement with ab initio electronic-structure calculations. The possibility to quantitatively correlate theory and experiment on the atomic scale opens up many new perspectives for orbital physics in transition-metal oxides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sketch of the LNO–LAO superlattice with layer stacks of four pseudo-cubic unit cells (u.c., see the red box) investigated in this work.
Figure 2: Momentum-dependent X-ray reflectivity of the (4 u.c.//4 u.c.) × 8 LNO–LAO superlattice.
Figure 3: Polarization-dependent XAS spectrum (FY) across the Ni L2,3 edges.
Figure 4: Energy scans of the reflectivity data with constant momentum transfer qz.

Similar content being viewed by others

References

  1. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    Article  CAS  Google Scholar 

  2. Chakhalian, J. et al. Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114–1117 (2007).

    Article  CAS  Google Scholar 

  3. Rata, A. D. et al. Strain-induced insulator state and giant gauge factor of La0.7Sr0.3CoO3 films. Phys. Rev. Lett. 100, 076401 (2008).

    Article  CAS  Google Scholar 

  4. Jackeli, G. & Khaliullin, G. Spin, charge, and orbital order at the interface between correlated oxides. Phys. Rev. Lett. 101, 216804 (2008).

    Article  CAS  Google Scholar 

  5. Tebano, A. et al. Evidence of orbital reconstruction at interfaces in ultrathin La0.67Sr0.33MnO3 films. Phys. Rev. Lett. 100, 137401 (2008).

    Article  CAS  Google Scholar 

  6. Aruta, C. et al. Orbital occupation, atomic moments, and magnetic ordering at interfaces of manganite thin films. Phys. Rev. B 80, 014431 (2009).

    Article  Google Scholar 

  7. Salluzzo, M. et al. Orbital reconstruction and the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 102, 166804 (2009).

    Article  CAS  Google Scholar 

  8. Yu, P. et al. Interface ferromagnetism and orbital reconstruction in BiFeO3–La0.67Sr0.33MnO3 heterostructures. Phys. Rev. Lett. 105, 027201 (2010).

    Article  CAS  Google Scholar 

  9. Schlappa, J. et al. Direct observation of t2g orbital ordering in magnetite. Phys. Rev. Lett. 100, 026406 (2008).

    Article  CAS  Google Scholar 

  10. Thomas, K. J. et al. Soft X-ray resonant diffraction study of magnetic and orbital correlations in a manganite near half doping. Phys. Rev. Lett. 92, 237204 (2004).

    Article  CAS  Google Scholar 

  11. Wilkins, S. B. et al. Direct observation of orbital ordering in La0.5Sr1.5MnO4 using soft X-ray diffraction. Phys. Rev. Lett. 91, 167205 (2003).

    Article  CAS  Google Scholar 

  12. Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Mater. 8, 263–270 (2009).

    Article  CAS  Google Scholar 

  13. Smadici, S. et al. Superconducting transition at 38 K in insulating-overdoped La2CuO4–La1.64Sr0.36CuO4 superlattices: Evidence for interface electronic redistribution from resonant soft X-ray scattering. Phys. Rev. Lett. 102, 107004 (2009).

    Article  CAS  Google Scholar 

  14. Stöhr, J. & Siegmann, H. C. Magnetism. From Fundamentals to Nanoscale Dynamics (Springer, 2007).

    Google Scholar 

  15. Mannhart, J. & Schlom, D. G. Oxide interfaces—an opportunity for electronics. Science 327, 1607–1611 (2010).

    Article  CAS  Google Scholar 

  16. Chaloupka, J. & Khaliullin, G. Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. Phys. Rev. Lett. 100, 016404 (2008).

    Article  Google Scholar 

  17. Hansmann, P. et al. Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. Phys. Rev. Lett. 103, 016401 (2009).

    Article  CAS  Google Scholar 

  18. Han, M. J., Marianetti, C. A. & Millis, A. J. Chemical control of orbital polarization in artificially structured transition-metal oxides: La2NiXO6 (X=B, Al, Ga, In) from first principles. Phys. Rev. B 82, 134408 (2010).

    Article  Google Scholar 

  19. May, S. J., Santos, T. S. & Bhattacharya, A. Onset of metallic behaviour in strained (LaNiO3)n/(SrMnO3)2 superlattices. Phys. Rev. B 79, 115127 (2009).

    Article  Google Scholar 

  20. Liu, J. et al. Effect of polar discontinuity on the growth of LaNiO3/LaAlO3 superlattices. Appl. Phys. Lett. 96, 133111 (2010).

    Article  Google Scholar 

  21. Macke, S., Brück, S. & Goering, E. ReMagX X-ray magnetic reflectivity tool, www.mf.mpg.de/remagx.html.

  22. Parratt, L. G. Surface studies of solids by total reflection of X-rays. Phys. Rev. 95, 359–369 (1954).

    Article  Google Scholar 

  23. Thole, B. T. & van der Laan, G. Sum rules for magnetic dichroism in rare earth 4f photoemission. Phys. Rev. Lett. 70, 2499–2502 (1993).

    Article  CAS  Google Scholar 

  24. van der Laan, G. Sum rules and fundamental spectra of magnetic X-ray dichroism in crystal field symmetry. J. Phys. Soc. Jpn. 63, 2393–2400 (1994).

    Article  CAS  Google Scholar 

  25. Schüßler-Langeheine, C. et al. Spectroscopy of stripe order in La1.8Sr0.2NiO4 using resonant soft X-ray diffraction. Phys. Rev. Lett. 95, 156402 (2005).

    Article  Google Scholar 

  26. Višňovský, Š. Magneto-optical polar Kerr effect and birefringence in magnetic crystals of orthorhombic symmetry. Czech. J. Phys. B 34, 155–162 (1984).

    Article  Google Scholar 

  27. Brück, S., Bauknecht, S., Ludescher, B., Goering, E. & Schütz, G. An advanced magnetic reflectometer. Rev. Sci. Instrum. 79, 083109 (2008).

    Article  Google Scholar 

  28. Wu, W. B. et al. Orbital polarization of LaSrMnO4 studied by soft X-ray linear dichroism. J. Electron Spectroscopy 137–140, 641–645 (2004).

    Article  Google Scholar 

  29. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  30. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  31. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  32. Perdew, J. P., Burke, K. & Ernzerhof, M. Erratum: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996); Phys. Rev. Lett. 78, 1396 (1997).

    Article  CAS  Google Scholar 

  33. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Deutsche Forschungsgemeinschaft within the framework of the TRR80, project C1. The authors thank G. Khaliullin, V. Kiryukhin, and G. A. Sawatzky for discussions. We acknowledge the provision of synchrotron radiation and the assistance from W. Mahler and B. Zada at the UE562-PGM1 beamline at Helmholtz-Zentrum Berlin—BESSY II. We thank M. Dudek for making the hard-X-ray reflectivity measurements, and S. Heinze for taking the atomic force microscopy image.

Author information

Authors and Affiliations

Authors

Contributions

E.B. carried out the experiments and analysed the data. M.W.H. made substantial contributions to the data analysis and carried out the cluster calculations. S.B. and E.G. designed and set the experiment up. S.B., E.G. and S.M. developed the analysis tool ReMagX. G.C. and H-U.H. grew the superlattices by pulsed laser deposition. A.F., E.B., A.V.B. and P.W. characterized the samples by high-resolution X-ray diffraction. X.Y. and O.K.A. carried out the LDA+U calculations. I.Z. and H.J.K. assisted in the experiments. V.H. worked on the data collection and analysis. E.B., M.W.H., V.H. and B.K. wrote the paper. V.H. and B.K. coordinated the project.

Corresponding authors

Correspondence to Vladimir Hinkov or Bernhard Keimer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benckiser, E., Haverkort, M., Brück, S. et al. Orbital reflectometry of oxide heterostructures. Nature Mater 10, 189–193 (2011). https://doi.org/10.1038/nmat2958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing