Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Room-temperature sub-diffraction-limited plasmon laser by total internal reflection


Plasmon lasers are a new class of coherent optical amplifiersthat generate and sustain light well below its diffraction limit1,2,3,4. Their intense, coherent and confined optical fields can enhance significantly light–matter interactions and bring fundamentallynew capabilities to bio-sensing, data storage, photolithography and optical communications5,6,7,8,9,10,11. However, metallic plasmon laser cavities generally exhibit both high metal and radiation losses, limiting the operation of plasmon lasers to cryogenic temperatures, where sufficient gain can be attained. Here, we present a room-temperature semiconductor sub-diffraction-limited laser by adopting total internal reflection of surface plasmons to mitigate the radiation loss, while using hybrid semiconductor–insulator–metal nanosquares for strong confinement with low metal loss. High cavity quality factors, approaching 100, along with strong λ/20 mode confinement, lead to enhancements of spontaneous emission rate by up to 18-fold. By controlling the structural geometry we reduce the number of cavity modes to achieve single-mode lasing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The room-temperature plasmon laser.
Figure 2: Laser spectra and integrated light-pump response of a room-temperature plasmon laser below and above threshold.
Figure 3: Laser spectrum and integrated light-pump response of a single-mode room-temperature plasmon laser.
Figure 4: Observation of the Purcell effect.


  1. Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Article  Google Scholar 

  2. Hill, M T. et al. Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    CAS  Article  Google Scholar 

  3. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1113 (2009).

    CAS  Article  Google Scholar 

  4. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    CAS  Article  Google Scholar 

  5. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    CAS  Article  Google Scholar 

  6. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    CAS  Article  Google Scholar 

  7. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    CAS  Article  Google Scholar 

  8. Dionne, J. A., Diest, K., Sweatlock, L. A. & Atwater, H. A. PlasMOStor: A metal–oxide–Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009).

    CAS  Article  Google Scholar 

  9. Zijlstra, P., Chon, J. W. M. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009).

    CAS  Article  Google Scholar 

  10. Challener, W. A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220–224 (2009).

    CAS  Article  Google Scholar 

  11. Stipe, B. C. et al. Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna. Nature Photon. 4, 484–488 (2010).

    CAS  Article  Google Scholar 

  12. Altug, H., Englund, D. & Vuckovic, J. Ultrafast photonic crystal nanocavity laser. Nature Phys. 2, 484–488 (2006).

    CAS  Article  Google Scholar 

  13. Song, Q., Cao, H., Ho, S. T. & Solomon, G. S. Near-IR subwavelength microdisk lasers. Appl. Phys. Lett. 94, 061109 (2009).

    Article  Google Scholar 

  14. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    CAS  Article  Google Scholar 

  15. Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nature Photon. 4, 395–399 (2010).

    CAS  Article  Google Scholar 

  16. Yu, K., Lakhani, A. & Wu, M. C. Subwavelength metal-optic semiconductor nanopatch lasers. Opt. Express 18, 8790–8799 (2010).

    CAS  Article  Google Scholar 

  17. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  18. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    CAS  Article  Google Scholar 

  19. Kolesov, R. et al. Wave–particle duality of single surface plasmon polaritons. Nature Phys. 5, 470–474 (2009).

    CAS  Article  Google Scholar 

  20. Oulton, R. F., Sorger, V. J., Genov, D. A., Pile, D. F. P. & Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photon. 2, 496–500 (2008).

    CAS  Article  Google Scholar 

  21. Poon, A. W., Courvoisier, F. & Chang, R. K. Multimode resonances in square-shaped optical microcavities. Opt. Lett. 26, 632–634 (2001).

    CAS  Article  Google Scholar 

  22. Huang, Y-Z., Chen, Q., Guo, W-H. & Yu, L-J. Experimental observation of resonant modes in GaInAsP microsquare resonators. IEEE Photonics Technol. Lett. 17, 2589–2591 (2005).

    CAS  Google Scholar 

  23. Wiersig, J. Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. Phys. Rev. Lett. 97, 253901 (2006).

    Article  Google Scholar 

  24. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  25. Ninomiya, S. & Adachi, S. Optical properties of wurtzite CdS. J. Appl. Phys. 78, 1183–1190 (1995).

    Article  Google Scholar 

  26. Ma, R-M., Dai, L. & Qin, G-G. High-performance nano-Schottky diodes and nano-MESFETs made on single CdS nanobelts. Nano Lett. 7, 868–873 (2007).

    CAS  Article  Google Scholar 

Download references


The authors thank X. B. Yin for discussions. We acknowledge financial support from the US Air Force Office of Scientific Research (AFOSR) MURI program under grant no. FA9550-04-1-0434 and by the National Science Foundation Nano-Scale Science and Engineering Center (NSF-NSEC) under award CMMI-0751621.

Author information

Authors and Affiliations



R-M.M., R.F.O. and X.Z. developed the device concept and design. R-M.M., R.F.O. and V.J.S. carried out the experiments. R.F.O. and R-M.M. conducted theoretical simulations. R-M.M., R.F.O., G.B. and X.Z. discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Xiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 898 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, RM., Oulton, R., Sorger, V. et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Mater 10, 110–113 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing