Flexible organic transistors and circuits with extreme bending stability

Abstract

Flexible electronic circuits are an essential prerequisite for the development of rollable displays, conformable sensors, biodegradable electronics and other applications with unconventional form factors. The smallest radius into which a circuit can be bent is typically several millimetres, limited by strain-induced damage to the active circuit elements. Bending-induced damage can be avoided by placing the circuit elements on rigid islands connected by stretchable wires, but the presence of rigid areas within the substrate plane limits the bending radius. Here we demonstrate organic transistors and complementary circuits that continue to operate without degradation while being folded into a radius of 100 μm. This enormous flexibility and bending stability is enabled by a very thin plastic substrate (12.5 μm), an atomically smooth planarization coating and a hybrid encapsulation stack that places the transistors in the neutral strain position. We demonstrate a potential application as a catheter with a sheet of transistors and sensors wrapped around it that enables the spatially resolved measurement of physical or chemical properties inside long, narrow tubes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ultraflexible integrated circuits.
Figure 2: Performance of organic TFTs on plastic substrates.
Figure 3: Bending tests on ultraflexible organic TFTs.
Figure 4: Ultraflexible organic circuits.
Figure 5: Tightly wound pressure-sensor helix.

References

  1. 1

    Huitema, H. E. A., Gelinck, G. H., van Lieshout, P. J. G., van Veenendaal, E. & Touwslager, F. J. Flexible electronic-paper active-matrix displays. J. Soc. Inf. Display 14, 729–733 (2006).

    Google Scholar 

  2. 2

    Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).

    CAS  Google Scholar 

  3. 3

    Bettinger, C. J. & Bao, Z. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22, 651–655 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Siegel, A. C. et al. Printable electronics: Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 20, 28–35 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Kodaira, T. et al. A flexible 2.1-in. active-matrix electrophoretic display with high resolution and a thickness of 100 μm. J. Soc. Inf. Displays 16, 107–111 (2008).

    Article  Google Scholar 

  7. 7

    Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Gleskova, H., Wagner, S., Soboyejo, W. & Suo, Z. Electrical response of amorphous silicon thin-film transistors under mechanical strain. J. Appl. Phys. 92, 6224–6229 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Han, L., Song, K., Mandlik, P. & Wagner, S. Ultraflexible amorphous silicon transistors made with a resilient insulator. Appl. Phys. Lett. 96, 042111 (2010).

    Article  Google Scholar 

  10. 10

    Sekitani, T. et al. Ultraflexible organic field-effect transistors embedded at a neutral strain position. Appl. Phys. Lett. 87, 173502 (2005).

    Article  Google Scholar 

  11. 11

    Roberts, M. E. et al. Cross-linked polymer gate dielectric films for low-voltage organic transistors. Chem. Mater. 21, 2292–2299 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Jedaa, A. & Halik, M. Toward strain resistant flexible organic thin film transistors. Appl. Phys. Lett. 95, 103309 (2009).

    Article  Google Scholar 

  13. 13

    Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Mater. 8, 494–499 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Ishida, K. et al. Stretchable EMI measurement sheet with 8×8 coil array, 2 V organic CMOS decoder, and 0.18 μm silicon CMOS LSIs for electric and magnetic field detection. IEEE J. Solid State Circ. 45, 249–259 (2010).

    Article  Google Scholar 

  15. 15

    Majewski, L. A., Schroeder, R., Voigt, M. & Grell, M. High performance organic transistors on cheap, commercial substrates. J. Phys. D 37, 3367–3372 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Yoon, M. H., Facchetti, A. & Marks, T. J. σπ molecular dielectric multilayers for low-voltage organic thin-film transistors. Proc. Natl Acad. Sci. USA 102, 4678–4682 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Jang, Y. et al. Patterning the organic electrodes of all-organic thin film transistors with a simple spray printing technique. Appl. Phys. Lett. 89, 183501 (2006).

    Article  Google Scholar 

  18. 18

    Kim, C. et al. Printable cross-linked polymer blend dielectrics. Design strategies, synthesis, microstructures, and electrical properties, with organic field-effect transistors as testbeds. J. Am. Chem. Soc. 130, 6867–6878 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Tan, H. S. et al. Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors. Appl. Phys. Lett. 93, 183503 (2008).

    Article  Google Scholar 

  20. 20

    Cai, Q. J. et al. Solution-processable barium titanate and strontium titanate nanoparticle dielectrics for low-voltage organic thin-film transistors. Chem. Mater. 21, 3153–3161 (2009).

    CAS  Google Scholar 

  21. 21

    Zhang, X. H., Potscavage, W. J. Jr, Choi, S. & Kippelen, B. Low-voltage flexible organic complementary inverters with high noise margin and high dc gain. Appl. Phys. Lett. 94, 043312 (2009).

    Article  Google Scholar 

  22. 22

    Zschieschang, U. et al. Flexible low-voltage organic transistors and circuits based on a high-mobility organic semiconductor with good air stability. Adv. Mater. 22, 982–985 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Lee, W. H. & Wang, C. C. Effect of nanocomposite gate dielectric roughness on pentacene field-effect transistor. J. Vac. Sci. Technol. B 27, 1116–1121 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Crone, B. K. et al. Design and fabrication of organic complementary circuits. J. Appl. Phys. 89, 5125–5132 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007).

    CAS  Article  Google Scholar 

  26. 26

    Bode, D. et al. Noise-margin analysis for organic thin-film complementary technology. IEEE Trans. Electr. Dev. 57, 201–208 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Sekitani, T & Someya, T. Air-stable operation of organic field-effect transistors on plastic films using organic/metallic hybrid passivation layers. Jpn J. Appl. Phys. 46, 4300–4305 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Klauk, H. et al. Flexible organic complementary circuits. IEEE Trans. Electr. Dev. 52, 618–622 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Yan, H. et al. Solution processed top-gate n-channel transistors and complementary circuits on plastics operating in ambient conditions. Adv. Mater. 20, 3393–3398 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Na, J. H., Kitamura, M. & Arakawa, Y. Low-voltage-operating organic complementary circuits based on pentacene and C60 transistors. Thin Solid Films 517, 2079–2082 (2009).

    CAS  Google Scholar 

  31. 31

    Behl, M. & Lendlein, A. Actively moving polymers. Soft Matter 3, 58–67 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by JST/CREST, the Grant-in-Aid for Scientific Research (KAKENHI; WAKATE S), NEDO and the Special Coordination Funds for Promoting and Technology. We also thank S. Takatani for technical support and discussion, Athene for manufacturing very fine shadow masks, Daisankasei for high-purity parylene (diX-SR), and NIPPON MEKTRON, Japan for supplying a three-dimensional forming substrate as a shape-memory polymer film.

Author information

Affiliations

Authors

Contributions

T. Sekitani and T. Someya designed the concept. T. Sekitani, U.Z., H.K. and T. Someya carried out experimental work, data analysis and wrote the paper. T. Someya supervised the project.

Corresponding author

Correspondence to Takao Someya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sekitani, T., Zschieschang, U., Klauk, H. et al. Flexible organic transistors and circuits with extreme bending stability. Nature Mater 9, 1015–1022 (2010). https://doi.org/10.1038/nmat2896

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing