Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing


The use of semiconductor quantum dots (QDs) for bioimaging and sensing has progressively matured over the past decade. QDs are highly sensitive to charge-transfer processes, which can alter their optical properties. Here, we demonstrate that QD–dopamine–peptide bioconjugates can function as charge-transfer coupled pH sensors. Dopamine is normally characterized by two intrinsic redox properties: a Nernstian dependence of formal potential on pH and oxidation of hydroquinone to quinone by O2 at basic pH. We show that the latter quinone can function as an electron acceptor quenching QD photoluminescence in a manner that depends directly on pH. We characterize the pH-dependent QD quenching using both electrochemistry and spectroscopy. QD–dopamine conjugates were also used as pH sensors that measured changes in cytoplasmic pH as cells underwent drug-induced alkalosis. A detailed mechanism describing the QD quenching processes that is consistent with dopamine’s inherent redox chemistry is presented.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Dopamine–peptide synthesis, QD conjugation, energy-transfer mechanism and cyclic voltammetry.
Figure 2: Steady-state photoluminescence spectra.
Figure 3: Excited-state lifetimes, QD absorption, oxidation and H2O2.
Figure 4: pH sensing in vitro.
Figure 5: Intracellular pH sensing.


  1. 1

    Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Klostranec, J. M. & Chan, W. C. W. Quantum dots in biological and biomedical research: Recent progress and present challenges. Adv. Mater. 18, 1953–1964 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Shim, M., Wang, C. J. & Guyot-Sionnest, P. Charge-tunable optical properties in colloidal semiconductor nanocrystals. J. Phys. Chem. B. 105, 2369–2373 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Anderson, N. A. & Lian, T. Q. Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. Annu. Rev. Phys. Chem. 56, 491–519 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Raymo, F. M. & Yildiz, I. Luminescent chemosensors based on semiconductor quantum dots. Phys. Chem. Chem. Phys. 9, 2036–2043 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Palaniappan, K., Hackney, S. A. & Liu, J. Supramolecular control of complexation-induced fluorescence change of water-soluble, beta-cyclodextrin-modified CdS quantum dots. Chem. Commun. 2704–2705 (2004).

  7. 7

    Neuman, D. et al. Quantum dot fluorescence quenching pathways with Cr(III) complexes. Photosensitized NO production from trans-Cr(cyclam)(ONO)(2)(+). J. Am. Chem. Soc. 130, 168–175 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Medintz, I. L. et al. Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge. J. Am. Chem. Soc. 130, 16745–16756 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Callan, J. F., Mulrooney, R. C., Kamila, S. & McCaughan, B. Anion sensing with luminescent quantum dots—a modular approach based on the photoinduced electron transfer (PET) mechanism. J. Fluor. 18, 527–532 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Dayal, S. et al. Observation of non-Forster-type energy-transfer behavior in quantum dot-pthalocyanine conjugates. J. Am. Chem. Soc. 128, 13974–13975 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Ruedas-Rama, M. J. & Hall, E. A. H. Azamacrocycle activated quantum dot for zinc ion detection. Anal. Chem. 80, 8260–8268 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Gill, R., Zayats, M. & Willner, I. Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. 47, 7602–7625 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Gill, R. et al. Probing biocatalytic transformations with CdSe–ZnS QDs. J. Am. Chem. Soc. 128, 15376–15377 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Banerjee, S., Kar, S., Perez, J. M. & Santra, S. Quantum dot-based OFF/ON probe for detection of glutathione. J. Phys. Chem. C 113, 9659–9663 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Liu, X., Cheng, L. X., Lei, J. P. & Ju, H. X. Dopamine detection based on its quenching effect on the anodic electrochemiluminescence of CdSe quantum dots. Analyst 133, 1161–1163 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Yuan, J., Guo, W., Yang, X. & Wang, E. Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots. Anal. Chem. 81, 362–368 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Uematsu, T., Waki, T., Torimoto, T. & Kuwabata, S. Systematic studies on emission quenching of cadmium telluride nanoparticles. J. Phys. Chem. C 113, 21621–21628 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Lee, K. R. & Kang, I. J. Effects of dopamine concentration on energy transfer between dendrimer-QD and dye-labeled antibody. Ultramicroscopy 109, 894–898 (2008).

    Article  Google Scholar 

  19. 19

    Palaniappan, K., Xue, C. H., Arumugam, G., Hackney, S. A. & Liu, J. Water-soluble, cyclodextrin-modified CdSe–CdS core–shell structured quantum dots. Chem. Mater. 18, 1275–1280 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Clarke, S. J. et al. Photophysics of dopamine-modified quantumdots and effects on biological systems. Nature Mater. 5, 409–417 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Cooper, D. R. et al. Photoenhancement of lifetimes in CdSe/ZnS and CdTe quantum dot–dopamine conjugates. Phys. Chem. Chem. Phys. 11, 4298–4310 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Laviron, E. Electrochemical reactions with protonations at equilibrium. 10. The kinetics of the parabenzoquinone hydroquinone couple on a platinum-electrode. J. Electroanal. Chem. 164, 213–227 (1984).

    CAS  Article  Google Scholar 

  23. 23

    Wraight, C. A. Proton and electron transfer in the acceptor quinone complex of photosynthetic reaction centers from Rhodobacter sphaeroides. Front. Biosci. 9, 309–337 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Patai, S. & Rappoport, Z. The Chemistry of the Quinonoid Compounds, Part I & II (John Wiley, 1988).

    Google Scholar 

  25. 25

    Finklea, H. O. Theory of coupled electron–proton transfer with potential-dependent transfer coefficients for redox couples attached to electrodes. J. Phys. Chem. B 105, 8685–8693 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Klegeris, A., Korkina, L. G. & Greenfield, S. A. Autoxidation of dopamine—a comparison of luminescent and spectrophotometric detection in basic solutions. Free Radic. Biol. Med. 18, 215–222 (1995).

    CAS  Article  Google Scholar 

  27. 27

    Laitinen, H. A. & Harris, W. E. Chemical Analysis: An Advanced Text and Reference 2nd edn (McGraw-Hill, 1975).

    Google Scholar 

  28. 28

    Bailey, S. I. & Ritchie, I. M. A cyclic voltammetric study of the aqueous electrochemistry of some quinones. Electrochim. Acta 30, 3–12 (1985).

    CAS  Article  Google Scholar 

  29. 29

    Costentin, C. Electrochemical approach to the mechanistic study of proton-coupled electron transfer. Chem. Rev. 108, 2145–2179 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Hay, S., Westerlan, K. & Tommow, C. Redox characteristics of a de novo quinone protein. J. Phys. Chem. C 111, 3488–3495 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Prasuhn, D. E. et al. Polyvalent display and packing of peptides and proteins on semiconductor quantum dots: Predicted versus experimental results. Small 6, 555–564 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Wang, H. Y., Sun, Y. & Tang, B. Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta 57, 899–907 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Mancini, M. C., Kairdolf, B. A., Smith, A. M. & Nie, S. M. Oxidative quenching and degradation of polymer-encapsulated quantum dots: New insights into the long-term fate and toxicity of nanocrystals in vivo. J. Am. Chem. Soc. 130, 10836–10837 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Yuan, J., Guo, W. & Wang, E. Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide. Anal. Chem. 80, 1141–1145 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Liu, X. & Ju, H. X. Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. Anal. Chem. 80, 5377–5382 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Schumb, W. C. Stability of concentrated hydrogen peroxide solutions. Ind. Eng. Chem. 41, 992–1003 (1949).

    CAS  Article  Google Scholar 

  37. 37

    Korn, S. J. & Horn, R. Influence of sodium–calcium exchange on calcium current rundown and the duration of calcium-dependent chloride currents in pituitary cells, studied with whole cell and perforated patch recording. J. Gen. Physiol. 94, 789–812 (1989).

    CAS  Article  Google Scholar 

  38. 38

    Medintz, I. L. & Mattoussi, H. Quantum dot-based resonance energy transfer and its growing application in biology. Phys. Chem. Chem. Phys. 11, 17–45 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Burda, C., Green, T. C., Link, S. & El-Sayed, M. A. Electron shuttling across the interface of CdSe nanoparticles monitored by femtosecond laser spectroscopy. J. Phys. Chem. B 103, 1783–1788 (1999).

    CAS  Article  Google Scholar 

  40. 40

    Yarovoi, A. A. et al. Photo-induced electron transfer in CdSe nanocrystals passivated by quinone derivatives. Proc. SPIE 6728, 67282K (2007).

    Article  Google Scholar 

  41. 41

    Lou, Y. B., Chen, X. B., Samia, A. C. & Burda, C. Femtosecond spectroscopic investigation of the carrier lifetimes in digenite quantum dots and discrimination of the electron and hole dynamics via ultrafast interfacial electron transfer. J. Phys. Chem. B 107, 12431–12437 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Long, D., Wu, G., Wang, W. & Yao, S. Photo-induced interfacial electron transfer from CdSe quantum dots to surface-bound p-benzoquinone and anthraquinone. Res. Chem. Intermed. 33, 655–661 (2007).

    CAS  Article  Google Scholar 

  43. 43

    Marcus, R. A. & Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811, 265–322 (1985).

    CAS  Article  Google Scholar 

  44. 44

    Clarke, S. J. Synthesis, Biological Targeting and Photophysics of Quantum Dots, Ch. 6. Ph.D. thesis. Department of Biomedical Engineering,McGill University (2008).

  45. 45

    Clarke, S. J., Hollmann, C. A., Aldaye, F. A. & Nadeau, J. L. Effect of ligand density on the spectral, physical, and biological characteristics of CdSe/ZnS quantum dots. Bioconjugate Chem. 19, 562–568 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Mei, B. C. et al. Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability. J. Mater. Chem. 18, 4949–4958 (2008).

    CAS  Article  Google Scholar 

  47. 47

    Mei, B. C. et al. Effects of ligand coordination number and surface curvature on the stability of gold nanoparticles in aqueous solutions. Langmuir 25, 10604–10611 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Aldana, J., Lavelle, N., Wang, Y. J. & Peng, X. G. Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. J. Am. Chem. Soc. 127, 2496–2504 (2005).

    CAS  Article  Google Scholar 

  49. 49

    Parak, W. J. et al. Biological applications of colloidal nanocrystals. Nanotechnology. 14, R15–R27 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Jeong, S. et al. Effect of the thiol–thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots. J. Am. Chem. Soc. 127, 10126–10127 (2005).

    CAS  Article  Google Scholar 

  51. 51

    Cai, P. & Snyder, J. K. Preparation, reactivity and neurotoxicity of tryptamine-4,5-dione. Tetrahedron Lett. 31, 969–972 (1990).

    CAS  Article  Google Scholar 

  52. 52

    Shamsipur, M., Kazemi, S. H., Alizadeh, A., Mousavi, M. F. & Workentin, M. S. Self-assembled monolayers of a hydroquinone-terminated alkanethiol onto gold surface. Interfacial electrochemistry and Michael-addition reaction with glutathione. J. Electroanal. Chem. 610, 218–226 (2007).

    CAS  Article  Google Scholar 

  53. 53

    Huang, X., Xu, R., Hawley, M. D., Hopkins, T. L. & Kramer, K. J. Electrochemical oxidation of n-acyldopamines and regioselective reactions of their quinones with n-acetylcysteine and thiourea. Arch. Biochem. Biophys. 352, 19–30 (1998).

    CAS  Article  Google Scholar 

  54. 54

    Freeman, R. et al. Biosensing and probing of intracellular metabolic pathways by NADH-sensitive quantum dots. Angew. Chem. Int. Ed. 48, 309–313 (2009).

    CAS  Article  Google Scholar 

  55. 55

    Freeman, R. & Willner, I. NAD(+)/NADH-sensitive quantum dots: Applications to probe NAD(+)-dependent enzymes and to sense the RDX explosive. Nano Lett. 9, 322–326 (2009).

    CAS  Article  Google Scholar 

  56. 56

    Tomasulo, M., Yildiz, I. & Raymo, F. M. pH-sensitive quantum dots. J. Phys. Chem. B 110, 3853–3855 (2006).

    CAS  Article  Google Scholar 

  57. 57

    Snee, P. T. et al. A ratiometric CdSe/ZnS nanocrystal pH sensor. J. Am. Chem. Soc. 128, 13320–13321 (2006).

    CAS  Article  Google Scholar 

  58. 58

    Chen, Y., Thakar, R. & Snee, P. T. Imparting nanoparticle function with size-controlled amphiphilic polymers. J. Am. Chem. Soc. 130, 3744–3745 (2008).

    CAS  Article  Google Scholar 

  59. 59

    Zhang, F. et al. Ion and pH sensing with colloidal nanoparticles: Influence of surface charge on sensing and colloidal properties. ChemPhysChem 11, 730–735 (2010).

    CAS  Article  Google Scholar 

  60. 60

    Dabbousi, B. O. et al. (CdSe)ZnS core–shell quantum dots: Synthesis and optical and structural characterization of a size series of highly luminescent materials. J. Phys. Chem. B 101, 9463–9475 (1997).

    CAS  Article  Google Scholar 

  61. 61

    Aziz, M. Z., Selvaraju, T. & Yang, H. Selective determination of catechol in the presence of hydroquinone at bare indium tin oxide electrodes via peak-potential separation and redox cycling by hydrazine. Electroanalysis 14, 1543–1546 (2007).

    Article  Google Scholar 

  62. 62

    Sapsford, K. E. et al. Monitoring of enzymatic proteolysis on a electroluminescent-CCD microchip platform using quantum dot–peptide substrates. Sens. Actuat. B 139, 13–21 (2009).

    CAS  Article  Google Scholar 

  63. 63

    Sapsford, K. E. et al. Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe–ZnS quantum dots. J. Phys. Chem. C 111, 11528–11538 (2007).

    CAS  Article  Google Scholar 

  64. 64

    Medintz, I. L. et al. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot–peptide conjugates. Nature Mater. 5, 581–589 (2006).

    CAS  Article  Google Scholar 

Download references


The authors thank T. O’Shaughnessy and I. Willner for helpful suggestions and acknowledge the CB Directorate/Physical S&T Division (DTRA), ONR, NRL and the NRL-NSI for financial support. M.H.S. acknowledges an NRC fellowship through NRL. J.B.B-C. acknowledges a Marie Curie International Outgoing Fellowship.

Author information




I.L.M., M.H.S. and S.A.T. conceived of the experimental strategy and carried out experiments. J.B.B-C. and P.E.D. designed and synthesized the peptides used. K.S., B.C.M. and M.H.S. synthesized QD material. M.H.S. synthesized the dopamine isothiocyante. K.S. and H.M. analysed experimental results. J.B.D. grew cell cultures and assisted with cellular experiments. J.S.M. carried out fluorescence lifetime experiments.

Corresponding authors

Correspondence to Igor L. Medintz or Hedi Mattoussi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1956 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Medintz, I., Stewart, M., Trammell, S. et al. Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nature Mater 9, 676–684 (2010). https://doi.org/10.1038/nmat2811

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing