Article | Published:

A multiferroic material to search for the permanent electric dipole moment of the electron

Nature Materials volume 9, pages 649654 (2010) | Download Citation

Abstract

We describe the first-principles design and subsequent synthesis of a new material with the specific functionalities required for a solid-state-based search for the permanent electric dipole moment of the electron. We show computationally that perovskite-structure europium barium titanate should exhibit the required large and pressure-dependent ferroelectric polarization, local magnetic moments and absence of magnetic ordering at liquid-helium temperature. Subsequent synthesis and characterization of Eu0.5Ba0.5TiO3 ceramics confirm the predicted desirable properties.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Electroweak baryogenesis. Rev. Mod. Phys. 71, 1463–1500 (1999).

  2. 2.

    & CP Violation Without Strangeness (Springer, 1997).

  3. 3.

    & The electric dipole moment of the electron. Rev. Mod. Phys. 63, 313–340 (1991).

  4. 4.

    , , & Measurement of the electron electric dipole moment using YbF molecules. Phys. Rev. Lett. 89, 023003 (2002).

  5. 5.

    , , , & Precision Zeeman–Stark spectroscopy of the metastable a(1)[ 3σ+] state of PbO. Phys. Rev. Lett. 92, 133007 (2004).

  6. 6.

    et al. Improved limit on the permanent electric dipole moment of 199Hg. Phys. Rev. Lett. 102, 101601 (2009).

  7. 7.

    et al. Laser trapping of 225Ra and 226Ra with repumping by room-temperature blackbody radiation. Phys. Rev. Lett. 98, 093001 (2007).

  8. 8.

    et al. Polarization and relaxation of 209Rn. Nucl. Instrum. Methods Phys. Res. A 579, 472–475 (2007).

  9. 9.

    & Search for the electron EDM using trapped molecular ions. Bull. Am. Phys. Soc.DAMOP04, J1.047 (2004).

  10. 10.

    , & Measuring the electric dipole moment of Cs and Rb in an optical lattice. Bull. Am. Phys. Soc.APR03, J1.008 (2003).

  11. 11.

    et al. Improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006).

  12. 12.

    , & Nonlinear amplification of small spin precession using long-range dipolar interactions. Phys. Rev. Lett. 94, 060801 (2005).

  13. 13.

    et al. Limit on the electron electric dipole moment in gadolinium–iron garnet. Phys. Rev. Lett. 95, 253004 (2005).

  14. 14.

    , , , & Nuclear-spin relaxation of 207Pb in ferroelectric powders. Phys. Rev. A 77, 022102 (2008).

  15. 15.

    Electric dipole moments of elementary particles. Sov. Phys. Usp. 11, 345–352 (1968).

  16. 16.

    Solid-state systems for the electron electric dipole moment and other fundamental measurements. Phys. Rev. A 66, 022109 (2002).

  17. 17.

    , , & Sensitivity of condensed-matter P- and T-violation experiments. Phys. Rev. A 73, 022107 (2006).

  18. 18.

    , & Prospects for a new search for the electron electric-dipole moment in solid gadolinium–iron-garnet ceramics. Phys. Rev. A 79, 022118–8 (2009).

  19. 19.

    , & The prospects for an electron electric dipole moment search with ferroelectric (Eu,Ba)TiO3 ceramics. Phys. Rev. A 81, 022104 (2010).

  20. 20.

    & Electric-field control of magnetism in complex oxide thin films. MRS Bull. 33, 1047–1050 (2008).

  21. 21.

    Revival of the magnetoelectric effect. J. Phys. D 38, R1–R30 (2005).

  22. 22.

    , & Enhancement of the electron electric dipole moment in gadolinium garnets. Phys. Rev. A 68, 042103 (2003).

  23. 23.

    Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

  24. 24.

    The dielectric properties of BaTiO3 at low temperatures. Phys. Rev. 81, 1064–1065 (1951).

  25. 25.

    , & Non-d0 Mn-driven ferroelectricity in antiferromagnetic BaMnO3. Phys. Rev. B 79, 205119 (2009).

  26. 26.

    & Multiferroics: Progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

  27. 27.

    & Dielectric and optical properties of melt-grown BaTiO3. J. Phys. Chem. Solids 29, 1797–1803 (1968).

  28. 28.

    & On phase transformation of BaTiO3. J. Phys. Soc. Jpn 2, 93–97 (1947).

  29. 29.

    & Coupling between magnetism and dielectric properties in quantum paraelectric EuTiO3. Phys. Rev. B 64, 054415 (2001).

  30. 30.

    et al. Magnetodielectric effect and optic soft mode behaviour in quantum paraelectric EuTiO3 ceramics. Europhys. Lett. 80, 27002 (2007).

  31. 31.

    & Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97, 267602 (2006).

  32. 32.

    , , , & Magnetic structure of EuTiO3. J. Appl. Phys. 37, 981–982 (1966).

  33. 33.

    , & Magnetic properties of EuTiO3, Eu2TiO4, and Eu3Ti2O7. Phys. Rev. B 10, 3913–3922 (1974).

  34. 34.

    , , , & Large off-diagonal magnetoelectric coupling in the quantum paraelectric antiferromagnet EuTiO3. Phys. Rev. B 81, 064426 (2010).

  35. 35.

    et al. Polar phonon mixing in magnetoelectric EuTiO3. Eur. Phys. J. B 71, 429–433 (2009).

  36. 36.

    , & Europium barium titanate—a magnetic ferroelectric compound. J. Appl. Phys. 49, 1452–1454 (1978).

  37. 37.

    et al. Coexistence of the phonon and relaxation soft mode in the terahertz dielectric response of tetragonal BaTiO3. Phys. Rev. Lett. 101, 167402 (2008).

  38. 38.

    , & Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  39. 39.

    , & First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method. J. Phys. Condens. Matter 9, 767–808 (1997).

  40. 40.

    , , , & Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

  41. 41.

    & Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

  42. 42.

    Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

  43. 43.

    & Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).

  44. 44.

    & Ab initio force constants of GaAs: A new approach to calculation of phonons and dielectric properties. Phys. Rev. Lett. 48, 406–409 (1982).

  45. 45.

    PHON: A program to calculate phonons using the small displacement method. Comp. Phys. Comm. 180, 2622–2633 (2009).

Download references

Acknowledgements

This work was supported by the US National Science Foundation under award number DMR-0940420 (NAS), by Yale University, by the Czech Science Foundation (project Nos. 202/09/0682 and AVOZ10100520) and by the Young Investigators Group Programme of the Helmholtz Association, Germany, contract VH-NG-409. We thank O. Pacherova, R. Krupkova and G. Urbanova for technical assistance and O. Sushkov for discussions.

Author information

Affiliations

  1. Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, 52425 Jülich and JARA-FIT, Germany

    • K. Z. Rushchanskii
    •  & M. Ležaić
  2. Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8, Czech Republic

    • S. Kamba
    • , V. Goian
    • , P. Vaněk
    • , M. Savinov
    • , D. Nuzhnyy
    •  & K. Knížek
  3. Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2, Czech Republic

    • J. Prokleška
  4. Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic

    • F. Laufek
  5. Yale University, Department of Physics, PO Box 208120, New Haven, Connecticut 06520-8120, USA

    • S. Eckel
    • , S. K. Lamoreaux
    •  & A. O. Sushkov
  6. Materials Department, University of California, Santa Barbara, California 93106-5050, USA

    • N. A. Spaldin

Authors

  1. Search for K. Z. Rushchanskii in:

  2. Search for S. Kamba in:

  3. Search for V. Goian in:

  4. Search for P. Vaněk in:

  5. Search for M. Savinov in:

  6. Search for J. Prokleška in:

  7. Search for D. Nuzhnyy in:

  8. Search for K. Knížek in:

  9. Search for F. Laufek in:

  10. Search for S. Eckel in:

  11. Search for S. K. Lamoreaux in:

  12. Search for A. O. Sushkov in:

  13. Search for M. Ležaić in:

  14. Search for N. A. Spaldin in:

Contributions

S.K.L. supervised the EDM measurement effort at Yale. A.O.S. and S.E. carried out the analysis and made preliminary measurements, showing that these materials could be useful in an EDM experiment. M.L. and N.A.S. selected (Eu,Ba)TiO3 as the candidate material according to the experimental requirements and supervised the ab initio calculations. K.Z.R. carried out the ab initio calculations. M.L., N.A.S. and K.Z.R. analysed the ab initio results and wrote the theoretical component of the paper. Ceramics were prepared by P.V. Crystal structure was determined by K.K. and F.L. Dielectric measurements were carried out by M.S. J.P. investigated magnetic properties of ceramics. V.G. carried out infrared reflectivity studies. D.N. investigated terahertz spectra. S.K. coordinated all experimental studies and wrote the synthesis and characterization part of the manuscript. N.A.S. coordinated the preparation of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to N. A. Spaldin.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat2799

Further reading