Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aluminium at terapascal pressures

Abstract

Studying materials at terapascal (TPa) pressures will provide insights into the deep interiors of large planets and chemistry under extreme conditions1,2. The equation of state of aluminium is of interest because it is used as a standard material in shock-wave experiments and because it is a typical s p-bonded metal1,3. Here we use density-functional-theory methods and a random-searching approach to predict stable structures of aluminium at multiterapascal pressures, finding that the low-pressure close-packed structures transform to more open structures above 3.2 TPa (nearly ten times the pressure at the centre of the Earth), with an incommensurate host–guest structure being stable over a wide range of pressures and temperatures. We show that the high-pressure phases may be described by a two-component model consisting of positive ions and interstitial electron ‘blobs’, and propose that such structures are common in s p-bonded materials up to multiterapascal pressures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Enthalpy–pressure relationships for Al phases.
Figure 2: Host–guest structures.
Figure 3: Equation of state of Al.

References

  1. Jeanloz, R. et al. Achieving high-density states through shock-wave loading of precompressed samples. Proc. Natl Acad. Sci. USA 104, 9172–9177 (2007).

    CAS  Article  Google Scholar 

  2. Hawreliak, J. et al. Modeling planetary interiors in laser based experiments using shockless compression. Astrophys. Space Sci. 307, 285–289 (2007).

    CAS  Article  Google Scholar 

  3. Batani, D. et al. Equation of state data for iron at pressures beyond 10 Mbar. Phys. Rev. Lett. 88, 235502 (2002).

    CAS  Article  Google Scholar 

  4. Lomonosov, I. V. Multi-phase equation of state of aluminum. Laser Particle Beams 25, 567–584 (2007).

    CAS  Google Scholar 

  5. Vladimirov, A. S., Voloshin, N. P., Nogin, V. N., Petrovtsev, A. V. & Simonenko, V. A. Shock compressibility of aluminum. Sov. Phys. JETP Lett. 39, 85–88 (1984).

    Google Scholar 

  6. https://lasers.llnl.gov/.

  7. Akahama, Y., Nishimura, M., Kinoshita, K. & Kawamura, H. Evidence of a fcc–hcp transition in aluminum at multimegabar pressure. Phys. Rev. Lett. 96, 045505 (2006).

    CAS  Article  Google Scholar 

  8. Tambe, M. J., Bonini, N. & Marzari, N. Bulk aluminum at high pressure: A first-principles study. Phys. Rev. B 77, 172102 (2008).

    Article  Google Scholar 

  9. Pickard, C. J. & Needs, R. J. High pressure phases of silane. Phys. Rev. Lett. 97, 045504 (2006).

    Article  Google Scholar 

  10. Pickard, C. J. & Needs, R. J. Structure of phase III of hydrogen. Nature Phys. 3, 473–476 (2007).

    CAS  Article  Google Scholar 

  11. Pickard, C. J. & Needs, R. J. Highly compressed ammonia forms an ionic crystal. Nature Mater. 10, 757–779 (2008).

    Google Scholar 

  12. Pickard, C. J. & Needs, R. J. Dense low-coordination phases of lithium. Phys. Rev. Lett. 102, 146401 (2009).

    Article  Google Scholar 

  13. Fortes, A. D., Suard, E., Lemé-Cailleau, M-H., Pickard, C. J. & Needs, R. J. Crystal structure of ammonia monohydrate II. J. Am. Chem. Soc. 131, 13508–13515 (2009).

    CAS  Article  Google Scholar 

  14. Nelmes, R. J., Allan, D. R., McMahon, M. I. & Belmonte, S. A. Self-hosting incommensurate structure of barium IV. Phys. Rev. Lett. 83, 4081–4084 (1999).

    CAS  Article  Google Scholar 

  15. McMahon, M. I. & Nelmes, R. J. High-pressure structures and phase transformations in elemental metals. Chem. Soc. Rev. 35, 943–963 (2006).

    CAS  Article  Google Scholar 

  16. Arapan, S., Mao, H-k. & Ahuja, R. Prediction of incommensurate crystal structure in Ca at high pressure. Proc. Natl Acad. Sci. USA 105, 20627–20630 (2008).

    CAS  Article  Google Scholar 

  17. Brazhkin, V. V. High-pressure synthesized materials: A chest of treasure and hints. High Pressure Res. 27, 333–351 (2007).

    CAS  Article  Google Scholar 

  18. Holian, K. S. A new equation of state for aluminum. J. Appl. Phys. 59, 149–157 (1986).

    CAS  Article  Google Scholar 

  19. Rousseau, B. & Ashcroft, N. W. Interstitial electronic localization. Phys. Rev. Lett. 101, 046407 (2008).

    Article  Google Scholar 

  20. Neaton, J. B. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141–144 (1999).

    CAS  Article  Google Scholar 

  21. Jones, H. Applications of the Bloch theory to the study of alloys and of the properties of bismuth. Proc. R. Soc. A 147, 396–417 (1934).

    CAS  Google Scholar 

  22. Ackland, G. J. & Macleod, I. R. Origin of the complex crystal structures of elements at intermediate pressure. New J. Phys. 6, 138 (2004).

    Article  Google Scholar 

  23. Von Schnering, H. G. & Nesper, R. How nature adapts chemical structures to curved surfaces. Angew. Chem. 26, 1059–1080 (1987).

    Article  Google Scholar 

  24. Ma, Y. M. et al. Transparent dense sodium. Nature 458, 182–185 (2009).

    CAS  Article  Google Scholar 

  25. Lundegaard, L. F. et al. Single-crystal studies of incommensurate Na to 1.5 Mbar. Phys. Rev. B 79, 064105 (2009).

    Article  Google Scholar 

  26. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005).

    CAS  Google Scholar 

  27. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    CAS  Article  Google Scholar 

  28. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors were supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK.

Author information

Authors and Affiliations

Authors

Contributions

C.J.P. and R.J.N. contributed extensively to all aspects of the work.

Corresponding author

Correspondence to Chris J. Pickard.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1031 kb)

Supplementary Information

Crystallographic information for Al1-P6mmm at 10 TPa (CIF 0 kb)

Supplementary Information

Crystallographic information for Al4-Cmma at 20 TPa (CIF 1 kb)

Supplementary Information

Crystallographic information for Al11-P-1 at 5TPa (CIF 1 kb)

Supplementary Information

Crystallographic information for Al16-B2n at 5TPa (CIF 1 kb)

Supplementary Information

Crystallographic information for Al16-I4mcm at 5TPa (CIF 1 kb)

Supplementary Information

Crystallographic information for Al21-P1 at 5TPa (CIF 2 kb)

Supplementary Information

Crystallographic information for Al22-P4mbm at 5TPa (CIF 1 kb)

Supplementary Information

Crystallographic information for Al40-P4mnc at 5TPa (CIF 1 kb)

Supplementary Information

Crystallographic information for Al42-P4mnc at 5TPa (CIF 1 kb)

Supplementary Information

Crystallographic information for Al46-P4mbm at 5TPa (CIF 3 kb)

Supplementary Information

Crystallographic information for Al86-P4212 at 5TPa (CIF 2 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pickard, C., Needs, R. Aluminium at terapascal pressures. Nature Mater 9, 624–627 (2010). https://doi.org/10.1038/nmat2796

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2796

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing