Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy

Abstract

The search for materials showing large caloric effects close to room temperature has become a challenge in modern materials physics and it is expected that such a class of materials will provide a way to renew present cooling devices that are based on the vapour compression of hazardous gases. Up to now, the most promising materials are giant magnetocaloric materials. The discovery of materials showing a giant magnetocaloric effect at temperatures close to ambient has opened up the possibility of using them for refrigeration1,2,3. As caloric effects refer to the isothermal entropy change achieved by application of an external field, several caloric effects can take place on tuning different external parameters such as pressure and electric field. Indeed the occurrence of large electrocaloric4,5 and elastocaloric6 effects has recently been reported. Here we show that the application of a moderate hydrostatic pressure to a magnetic shape-memory alloy gives rise to a caloric effect with a magnitude that is comparable to the giant magnetocaloric effect reported in this class of materials. We anticipate that similar barocaloric effects will occur in many giant-magnetocaloric materials undergoing magnetostructural transitions involving a volume change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature dependence of the magnetization.
Figure 2: Calorimetric signal as a function of temperature.
Figure 3: Entropy as a function of temperature.
Figure 4: Caloric effects in Ni–Mn–In.

Similar content being viewed by others

References

  1. Pecharsky, V. K. & Gschneidner, K. A. Jr Giant magnetocaloric effect in Gd5Si2Ge2 . Phys. Rev. Lett. 78, 4494–4497 (1997).

    Article  CAS  Google Scholar 

  2. Tegus, O., Brück, E., Buschow, K. H. J. & de Boer, F. R. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150–152 (2002).

    Article  CAS  Google Scholar 

  3. Krenke, T. et al. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nature Mater. 4, 450–454 (2005).

    Article  CAS  Google Scholar 

  4. Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3 . Science 311, 1270–1271 (2006).

    Article  CAS  Google Scholar 

  5. Neese, B. et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821–823 (2008).

    Article  CAS  Google Scholar 

  6. Bonnot, E., Romero, R., Mañosa, L., Vives, E. & Planes, A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys. Rev. Lett. 100, 125901 (2008).

    Article  Google Scholar 

  7. Müller, K. A. et al. Cooling by adiabatic pressure application in Pr1−xLaxNiO3 . Appl. Phys. Lett. 73, 1056–1058 (1998).

    Article  Google Scholar 

  8. Strässle, Th., Furrer, A., Hossain, Z. & Geibel, Ch. Magnetic cooling by application of external pressure in rare-earth compounds. Phys. Rev. B 67, 054407 (2003).

    Article  Google Scholar 

  9. Gschneidner, K. A., Pecharsky, V. K. & Tsokol, A. O. Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005).

    Article  CAS  Google Scholar 

  10. Brück, E. Developments in magnetocaloric refrigeration. J. Phys. D 38, R381–R391 (2005).

    Article  Google Scholar 

  11. de Oliveira, N. A. Entropy change upon magnetic field and pressure variations. Appl. Phys. Lett. 90, 052501 (2007).

    Article  Google Scholar 

  12. de Medeiros, L. G., de Oliveira, N. A. & Troper, A. Barocaloric and magnetocaloric effects in La(Fe0.89Si0.11)13 . J. Appl. Phys. 103, 113909 (2008).

    Article  Google Scholar 

  13. Morellon, L. et al. Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2 . Phys. Rev. Lett. 93, 137201 (2004).

    Article  CAS  Google Scholar 

  14. Lyubina, J., Nenkov, K., Schultz, L. & Gutfleisch, O. Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx . Phys. Rev. Lett. 101, 177203 (2008).

    Article  Google Scholar 

  15. Planes, A., Mañosa, L. & Acet, M. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter 21, 233201 (2009).

    Article  Google Scholar 

  16. Kainuma, R. et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006).

    Article  CAS  Google Scholar 

  17. Krenke, T. et al. Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys. Rev. B 75, 104414 (2007).

    Article  Google Scholar 

  18. Sharma, V. K., Chattopadhyat, M. K., Shaeb, K. H. B., Chouhan, A. & Roy, S. B. Large magnetoresistance in Ni50Mn34In16 alloy. Appl. Phys. Lett. 89, 222509 (2006).

    Article  Google Scholar 

  19. Mañosa, L. et al. Effects of hydrostatic pressure on the magnetism and martensitic transition of Ni–Mn–In magnetic superelastic alloys. Appl. Phys. Lett. 92, 012515 (2008).

    Article  Google Scholar 

  20. Pecharsky, V. K. & Gschneidner, K. A. Jr. in Magnetism and Structure in Functional Materials (eds Planes, A., Mañosa, L. & Saxena, A.) 199–222 (Springer Series in Materials Science, 2005).

    Book  Google Scholar 

  21. Aksoy, S., Acet, M., Deen, P. P., Mañosa, L. & Planes, A. Magnetic correlations in martensitic Ni–Mn-based Heusler shape-memory alloys: Neutron polarization analysis. Phys. Rev. B 79, 212401 (2009).

    Article  Google Scholar 

  22. Casanova, F. et al. Direct observation of the magnetic-field-induced entropy change in Gd5(SixGe1−x)4 giant magnetocaloric alloys. Appl. Phys. Lett. 86, 262504 (2005).

    Article  Google Scholar 

  23. Mañosa, L., Planes, A. & Moya, X. Comment on ‘The magnetocaloric effect of LaFe11.6Si1.4, La0.8Nd0.2Fe11.5Si1.5, and Ni43Mn46Sn11 compounds in the vicinity of the first-order phase transition’. Adv. Mater. 21, 3725–3726 (2009).

    Article  Google Scholar 

  24. Planes, A. & Mañosa, L. Vibrational properties of shape memory alloys. Solid State Phys. 55, 159–267 (2001).

    Article  CAS  Google Scholar 

  25. Krenke, T. PhD thesis, Univ. Duisburg-Essen (2007).

  26. Wurflinger, A. Differential thermal-analysis under high-pressure. 4. Low-temperature DTA of solid–solid and solid–liquid transitions of several hydrocarbons up to 3 kbar. Ber. Bunsen Gesell. Phys. Chem. Chem. Phys. 79, 1195–1201 (1975).

    Article  Google Scholar 

  27. Marcos, J. et al. A high-sensitivity differential scanning calorimeter with magnetic field for magnetostructural transitions. Rev. Sci. Inst. 74, 4768–4771 (2003).

    Article  CAS  Google Scholar 

  28. Tolédano, J. C. & Tolédano, P. The Landau Theory of Phase Transitions (World Scientific, 1987).

    Book  Google Scholar 

  29. Sasioglu, E., Sandratskii, L. M. & Bruno, P. Role of conduction electrons in mediating exchange interactions in Mn-based Heusler alloys. Phys. Rev. B 77, 064417 (2008).

    Article  Google Scholar 

  30. Buchelnikov, V. D. et al. Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X=In,Sn,Sb). Phys. Rev. B 78, 184427 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CICyT (Spain), projects MAT2007-62100, and FIS2008-00837 and by Deutsche Forschungsgemeinschaft, grant No. SPP 1239. D.G. acknowledges support from DGICyT (Spain).

Author information

Authors and Affiliations

Authors

Contributions

L.M. and A.P. planned the experiments in collaboration with J.T. and M.A. Sample preparation and magnetization measurements were carried out by S.A. and M.A. Calorimetric measurements under pressure were carried out by E.B. and M.B., and under magnetic field, by D.G. All authors discussed the results and analysed the data. The manuscript was prepared by L.M. in collaboration with A.P., J.T. and M.A.

Corresponding author

Correspondence to Lluís Mañosa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mañosa, L., González-Alonso, D., Planes, A. et al. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nature Mater 9, 478–481 (2010). https://doi.org/10.1038/nmat2731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing