Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3

Abstract

Hexagonal YMnO3 shows a unique improper ferroelectricity induced by structural trimerization. Extensive research on this system is primarily due to its candidacy for ferroelectric memory as well as the intriguing coexistence of ferroelectricity and magnetism. Despite this research, the true ferroelectric domain structure and its relationship with structural domains have never been revealed. Using transmission electron microscopy and conductive atomic force microscopy, we observed an intriguing conductive ‘cloverleaf’ pattern of six domains emerging from one point—all distinctly characterized by polarization orientation and structural antiphase relationships. In addition, we discovered that the ferroelectric domain walls and structural antiphase boundaries are mutually locked and this strong locking results in incomplete poling even when large electric fields are applied. Furthermore, the locked walls are found to be insulating, which seems consistent with the surprising result that the ferroelectric state is more conducting than the paraelectric state. These fascinating results reveal the rich physics of the hexagonal system with a truly semiconducting bandgap where structural trimerization, ferroelectricity, magnetism and charge conduction are intricately coupled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The crystallographic structure of domains and domain boundaries in ferroelectric hexagonal YMnO3.
Figure 2: The cloverleaf domain patterns in ferroelectric YMnO3.
Figure 3: The poling effect on cloverleaf ferroelectric domains.
Figure 4: The evolution of conductive domain patterns with various bias voltages, and conduction profiles of ferroelectric domains and domain boundaries.

Similar content being viewed by others

References

  1. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

    Article  CAS  Google Scholar 

  2. Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

    Article  CAS  Google Scholar 

  3. Ramesh, R. & Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  4. Levanyuk, A. P. & Sannikov, D. G. Improper ferroelectrics. Sov. Phys. Usp. 17, 199–214 (1974).

    Article  Google Scholar 

  5. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  6. Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

    Article  CAS  Google Scholar 

  7. Ikeda, N. et al. Ferroelectricity from iron valence ordering in the charge-frustrated LuFe2O4 . Nature 436, 1136–1138 (2005).

    Article  CAS  Google Scholar 

  8. Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3 . Nature Mater. 3, 164–170 (2004).

    Article  CAS  Google Scholar 

  9. Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103 (2005).

    Article  Google Scholar 

  10. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  11. Cheong, S.-W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  12. Mitsui, T. & Furuichi, J. Domain structure of Rochelle salt and KH2PO4 . Phys. Rev. 90, 193–202 (1953).

    Article  CAS  Google Scholar 

  13. Fiebig, M. et al. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    Article  CAS  Google Scholar 

  14. Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004).

    Article  CAS  Google Scholar 

  15. Fujimura, N., Ishida, T., Yoshimura, T. & Ito, T. Epitaxially grown YMnO3 film: New candidate for nonvolatile memory devices. Appl. Phys. Lett. 69, 1011–1013 (1996).

    Article  CAS  Google Scholar 

  16. Choi, T. & Lee, J. Bi modification for low-temperature processing of YMnO3 thin films. Appl. Phys. Lett. 84, 5043–5045 (2004).

    Article  CAS  Google Scholar 

  17. Lorenz, B., Litvinchuk, A. P., Gospodinov, M. M. & Chu, C. W. Field-induced reentrant novel phase and a ferroelectric–magnetic order coupling in HoMnO3 . Phys. Rev. Lett. 92, 087204 (2004).

    Article  CAS  Google Scholar 

  18. Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

    Article  CAS  Google Scholar 

  19. Woodall, J. M. III–V Compounds and alloys: An update. Science 208, 908–915 (1980).

    Article  CAS  Google Scholar 

  20. Medvedeva, J. E., Anisimov, V. I., Korotin, M. A., Mryasov, O. N. & Freeman, A. J. The effect of Coulomb correlation and magnetic ordering on the electronic structure of two hexagonal phases of ferroelectromagnetic YMnO3 . J. Phys. Condens. Matter 12, 4947–4958 (2000).

    Article  CAS  Google Scholar 

  21. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  22. Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S.-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3 . Science 324, 63–66 (2009).

    Article  CAS  Google Scholar 

  23. Maksymovych, P. et al. Polarization control of electron tunnelling into ferroelectric surfaces. Science 324, 1421–1425 (2009).

    Article  CAS  Google Scholar 

  24. Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).

    Article  CAS  Google Scholar 

  25. Aird, A. & Salje, E. K. H. Sheet superconductivity in twin walls: Experimental evidence of WO3−x . J. Phys. Condens. Matter 10, L377–L380 (1998).

    Article  CAS  Google Scholar 

  26. Bartels, M. et al. Impurity-induced resistivity of ferroelastic domain walls in doped lead phosphate. J. Phys. Condens. Matter 15, 957–962 (2003).

    Article  CAS  Google Scholar 

  27. Ihlefeld, J. F. et al. Optical band gap of BiFeO3 grown by molecular-beam epitaxy. Appl. Phys. Lett. 92, 142908 (2008).

    Article  Google Scholar 

  28. Cardona, M. Optical properties and band structure of SrTiO3 and BaTiO3 . Phys. Rev. 140, A651–A655 (1965).

    Article  Google Scholar 

  29. Katsufuji, T. et al. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R=Y, Yb and Lu). Phys. Rev. B 64, 104419 (2001).

    Article  Google Scholar 

  30. Chen, C. H., Gibson, J. M. & Fleming, R. M. Direct observation of charge-density-wave discommensurations and dislocations in 2H–TaSe2 . Phys. Rev. Lett. 47, 723–725 (1981).

    Article  CAS  Google Scholar 

  31. Tanaka, M. & Honjo, G. Electron optical studies of barium titanate single crystal films. J. Phys. Soc. Jpn 19, 954–970 (1964).

    Article  CAS  Google Scholar 

  32. Spaldin, N. A. Fundamental size limits in ferroelectricity. Science 304, 1606–1607 (2004).

    Article  CAS  Google Scholar 

  33. Landuyt, J., Gevers, R. V. & Amelinckx, S. Fringe patterns at anti-phase boundaries with α=π observed in the electron microscope. Phys. Status Solidi 7, 519–546 (1964).

    Article  Google Scholar 

  34. Nénert, G. et al. Experimental evidence for an intermediate phase in the multiferroic YMnO3 . J. Phys. Condens. Matter 19, 466212 (2007).

    Article  Google Scholar 

  35. Wemple, S. H. Polarization fluctuations and the optical-absorption in BaTiO3 . Phys. Rev. B. 2, 2679–2689 (1981).

    Article  Google Scholar 

  36. Palaniappan, L., Gnanam, F. D. & Ramasamy, P. Electrical characterization of SbSI grown from the melt by a temperature fluctuation technique. J. Mater. Sci. Lett. 5, 1007–1008 (1986).

    Article  CAS  Google Scholar 

  37. Cho, D.-Y. et al. Ferroelectricity driven by Y d0-ness with rehybridization in YMnO3 . Phys. Rev. Lett. 98, 217601 (2007).

    Article  Google Scholar 

  38. Wood, V. E., Austin, A. E., Collins, E. W. & Brog, K. C. Magnetic properties of heavy-rare-earth orthomanganites. J. Phys. Chem. Solids 34, 859–868 (1973).

    Article  CAS  Google Scholar 

  39. Pintilie, L., Vrejoiu, I., Hesse, D., LeRhun, G. & Alexe, M. Ferroelectric polarization-leakage current relation in high quality epitaxial Pb(Zr,Ti)O3 films. Phys. Rev. B 75, 104103 (2007).

    Article  Google Scholar 

  40. Kim, S. H. et al. Growth, ferroelectric properties, and phonon modes of YMnO3 single crystal. Cryst. Res. Technol. 35, 19–27 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank S. W. Fackler (Rutgers), J. J. Cheong (Columbia), V. Kiryukhin (Rutgers) and M. Tanimura (NISSAN ARC) for useful discussions. This work was supported by NSF-DMR-0804109 and NSF-DMR-0844807.

Author information

Authors and Affiliations

Authors

Contributions

S.-W.C. grew single-crystalline specimens, designed the research project and supervised the experiments. T.C. carried out CAFM experiments with the help of W.W. and carried out electrical transport measurements with the help of Y.J.C. Y.H. collected TEM data and analysed structural properties. H.T.Y. prepared CAFM specimens. S.-W.C., T.C. and Y.H. co-wrote the paper, and all authors discussed the results.

Corresponding author

Correspondence to S.-W. Cheong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 998 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, T., Horibe, Y., Yi, H. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nature Mater 9, 253–258 (2010). https://doi.org/10.1038/nmat2632

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2632

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing