Review Article | Published:

Plasmonics for improved photovoltaic devices

Nature Materials volume 9, pages 205213 (2010) | Download Citation

  • A Corrigendum to this article was published on 23 September 2010

This article has been updated

Abstract

The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 01 September 2010

    In Fig. 1a of the version of this Review originally published, the graph labelled '2-μm-thick Si wafer' is that for a 10-μm-thick wafer. The original figure caption and descriptions in the text are correct. The figure has been corrected in the HTML and PDF versions of this Review.

References

  1. 1.

    Solar Cells: Operating Principles, Technology and System Applications (Univ. New South Wales, 1998).

  2. 2.

    & Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electr. Dev. 29, 300–305 (1982).

  3. 3.

    , & Maximum statistical increase of optical absorption in textured semiconductor films. Opt. Lett. 8, 491–493 (1983).

  4. 4.

    Plasmonics applied. Science 322, 868 (2008).

  5. 5.

    & Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306, 1002–1005 (2004).

  6. 6.

    , , & Polarization-selective plasmon-enhanced Si quantum dot luminescence. Nano Lett. 6, 2622–2625 (2006).

  7. 7.

    , , & Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna. Phys. Rev. Lett. 97, 017402 (2006).

  8. 8.

    Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

  9. 9.

    , , & Nanowire plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett. 102, 203904 (2008).

  10. 10.

    , , & A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

  11. 11.

    , , & Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998).

  12. 12.

    et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

  13. 13.

    & Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains. Phys. Rev. B 74, 033402 (2006).

  14. 14.

    , , & Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21, 2442–2446 (2004).

  15. 15.

    , , , & Resonant optical antennas. Science 308, 1607–1609 (2005).

  16. 16.

    , , , & Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762–1764 (2002).

  17. 17.

    , , , & Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

  18. 18.

    & Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004).

  19. 19.

    et al. Quantum cascade surface-emitting photonic crystal laser. Science 302, 1374–1377 (2003).

  20. 20.

    et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

  21. 21.

    et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

  22. 22.

    et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater. 3, 601–605 (2004).

  23. 23.

    Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3968 (2000).

  24. 24.

    , & Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

  25. 25.

    et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).

  26. 26.

    , , & Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

  27. 27.

    & Optical Properties of Metal Clusters (Springer, 1995).

  28. 28.

    & Absorption and Scattering of Light by Small Particles (Wiley, 2008).

  29. 29.

    Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description. J. Opt. Soc. Am. B 17, 1906–1913 (2000).

  30. 30.

    & Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl. Phys. Lett. 69, 2327–2329 (1996).

  31. 31.

    & Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 73, 3815–3817 (1998).

  32. 32.

    , & Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86, 063106 (2005).

  33. 33.

    , , , & Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 89, 093103 (2006).

  34. 34.

    , , , & Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl. Phys. Lett. 93, 113108 (2008).

  35. 35.

    , , & Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007).

  36. 36.

    et al. Nanoparticle-induced light scattering for improved performance of quantum-well solar cells. Appl. Phys. Lett. 93, 091107 (2008).

  37. 37.

    , & Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 93, 121904 (2008).

  38. 38.

    & Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008).

  39. 39.

    & Plasmonic solar cells. Opt. Express 16, 21793–21800 (2008).

  40. 40.

    , , , & Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl. Phys. Lett. 82, 3811–3813 (2003).

  41. 41.

    , , & Infrared surface plasmons in two-dimensional silver nanopartice arrays in silicon. Appl. Phys. Lett. 85, 1317–1319 (2004).

  42. 42.

    , & Tunable light trapping for solar cells using localized surface plasmons. J. Appl. Phys. 105, 114310 (2009).

  43. 43.

    , , , & Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J. Appl. Phys. 101, 104309 (2007).

  44. 44.

    , , & Asymmetry in light-trapping by plasmonic nanoparticle arrays located on the front or on the rear of solar cells. Appl. Phys. Lett. (in the press).

  45. 45.

    , , , & Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009).

  46. 46.

    , , & Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells. Appl. Phys. Lett. 95, 53115 (2009).

  47. 47.

    & Thermodynamic limit to light trapping in thin planar structures. J. Opt. Soc. Am. A 14, 3001–3008 (1997).

  48. 48.

    & Enhanced dipole–dipole interaction between elementary radiators near a surface. Phys. Rev. Lett. 80, 5663–5668 (1998).

  49. 49.

    & Absorption enhancement due to scattering by dipoles into silicon waveguides. J. Appl. Phys. 100, 044504 (2006).

  50. 50.

    , & Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519–7526 (2004).

  51. 51.

    , , , & Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. 93, 073307 (2008).

  52. 52.

    , , , & Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 92, 013504 (2008).

  53. 53.

    , , & Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl. Phys. Lett. 93, 123308 (2008).

  54. 54.

    , , , Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons. Jpn. J. Appl. Phys. 34, 6448–6451 (1995).

  55. 55.

    , , , & Metal cluster enhanced organic solar cells. Sol. Energy Mater. Sol. C. 61, 97–105 (2000).

  56. 56.

    , & Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl. Phys. Lett. 92, 013113 (2008).

  57. 57.

    et al. Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes. Appl. Phys. Lett. 91, 191111 (2007).

  58. 58.

    , , & Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl. Phys. Lett. 92, 053110 (2008).

  59. 59.

    , & Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J. Appl. Phys. 102, 093713 (2007).

  60. 60.

    Surface Plasmons on Smooth and Rough Surfaces and on Gratings. (Springer Tracts in Modern Physics III, Springer, 1988).

  61. 61.

    Plasmon–polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys. Rev. B 61, 10484–10503 (2000).

  62. 62.

    Plasmon–polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures. Phys. Rev. B 63, 125417 (2001).

  63. 63.

    , , & Planar plasmon metal waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B 72, 075405 (2005).

  64. 64.

    , , & Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006).

  65. 65.

    et al. Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling. Appl. Phys. Lett. 90, 143506 (2007).

  66. 66.

    , , & Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391–4397 (2008).

  67. 67.

    et al. Improved red-response in thin film a-Si:H solar cells with nanostructured plasmonic back reflectors. Appl. Phys. Lett. 95, 183503 (2009).

  68. 68.

    , , & Long-range surface plasmon polaritons in ultra-thin films of silicon. Opt. Express 16, 19674–19685 (2008).

  69. 69.

    , , & Plasmonic excitation of organic double heterostructure solar cells. Appl. Phys. Lett. 90, 121102 (2007).

  70. 70.

    , , , & Surface plasmon increase absorption in polymer photovoltaic cells. Appl. Phys. Lett. 91, 113514 (2007).

  71. 71.

    , , , & Surface plasmon polariton mediated energy transfer in organic photovoltaic devices. Appl. Phys. Lett. 91, 093506 (2007).

  72. 72.

    , , , & Plasmonic absorption in textured silver back reflectors of thin film solar cells. J. Appl. Phys. 104, 064509 (2008).

  73. 73.

    , , , & Surface plasmon increase absorption in polymer photovoltaic cells. Appl. Phys. Lett. 91, 113514 (2007).

  74. 74.

    et al. Understanding light trapping by light-scattering textured back electrodes in thin-film n–i–p silicon solar cells. J. Appl. Phys. 102, 014503 (2007).

  75. 75.

    et al. Nanostructured thin films for multibandgap silicon triple junction solar cells. Sol. Energy Mater. Sol. C. 93, 1129–1133 (2009).

  76. 76.

    , & Absorption enhancement in solar cells by localized plasmon polaritons. J. Appl. Phys. 104, 123102 (2008).

  77. 77.

    , , & 10% efficient CSG minimodules. Proc. 22nd Eur. Photovoltaic Solar Energy Conf. Milan, Italy, 3–7 September 2007.

  78. 78.

    , , & Very high efficiency silicon solar cells: science and technology. IEEE Trans. Electr. Dev. 46, 1940–1947 (1999).

  79. 79.

    , & Metallic nanoparticles as intermediate reflectors in tandem solar cells. Appl. Phys. Lett. 95, 121105 (2009).

  80. 80.

    , & All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

  81. 81.

    , , , & A silicon-based electrical source of surface plasmon polaritons. Nature Mater. 9, 21–25 (2010).

  82. 82.

    , & Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence. Opt. Express 17, 14586–14597 (2009).

  83. 83.

    , & Conjugated polymer/metal nanowire heterostructure plasmonic antennas. Adv. Mater. 10.1002/adma.200902024 (2009).

  84. 84.

    , , , & An angle-independent frequency selective surface in the optical range. Opt. Express 14, 11945–11951 (2006).

  85. 85.

    , , & Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements. Nano Lett. 9, 2832–2837 (2009).

  86. 86.

    , , , & Enhanced spontaneous emission rate in annular plasmonic nanocavities. Appl. Phys. Lett. 95, 263106 (2009).

  87. 87.

    et al. Assessment of carrier-multiplication efficiency in bulk PbSe and PbS. Nature Phys. 5, 811–814 (2009).

  88. 88.

    et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516 (2007).

  89. 89.

    et al. Critical issues in the design of polycrystalline, thin-film tandem solar cells. Prog. Photovolt. Res. Appl. 11, 359–375 (2003).

  90. 90.

    et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

  91. 91.

    & 3D photonic structures by sol-gel imprint lithography. Mater. Res. Soc. Symp. Proc. 1002, 1002-N03-05 (2007).

  92. 92.

    , , , & Surface-plasmon enhanced transparent electrodes in organic photovoltaics. Appl. Phys. Lett. 92, 243304 (2008).

  93. 93.

    US Geological Survey 2004 .

  94. 94.

    Improved estimates for Te and Se availability from Cu anode slimes and recent price trends. Prog. Phot. 14, 743 (2006).

Download references

Acknowledgements

We thank M. Bonn, K. Catchpole, V. E. Ferry, J. Gomez Rivas, M. Hebbink, J. N. Munday, P. Saeta, W. C. Sinke, R. E. I. Schropp, K. Tanabe, E. Verhagen, M. A. Verschuuren, R. de Waele and E. T. Yu for discussions. This work is supported by the Global Climate and Energy Project. The FOM portion of this work is part of the research programme of FOM and of the Joint Solar Panel programme, which are both financially supported by the Netherlands Organisation for Scientific Research (NWO). The Caltech portion of this work was supported by the Department of Energy under grant number DOE DE-FG02-07ER46405.

Author information

Affiliations

  1. Caltech Center for Sustainable Energy Research and Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA.

    • Harry A. Atwater
  2. Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.

    • Albert Polman

Authors

  1. Search for Harry A. Atwater in:

  2. Search for Albert Polman in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Harry A. Atwater or Albert Polman.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nmat2629

Further reading