Porous organic cages

Abstract

Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer–Emmett–Teller surface areas of 550 and 23 m2 g−1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structures for cages 1–3 determined by X-ray crystallography for desolvated cages, as shown with one of the triangular pore windows facing.
Figure 2: Schematic of cage–cage packing in the crystal structures of 1–3.
Figure 3: Varying the vertex functionality for cages 1–3 leads to an evolution in pore structure and connectivity.
Figure 4: Gas-sorption isotherms for cages 1–3.
Figure 5: Molecular simulations suggest that the 0D cage volume contributes to N2 gas uptake for 2, despite being formally isolated from the 1D pore channels.
Figure 6: Recrystallization of 1 forms a permanently porous polymorph.

References

  1. 1

    Barbour, L. J. Crystal porosity and the burden of proof. Chem. Commun. 1163–1168 (2006).

  2. 2

    Cheetham, A. K., Férey, G. & Loiseau, T. Open-framework inorganic materials. Angew. Chem. Int. Ed. 38, 3268–3292 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  Google Scholar 

  5. 5

    Atwood, J. L., Barbour, L. J. & Jerga, A. Storage of methane and freon by interstitial van der Waals confinement. Science 296, 2367–2368 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Thallapally, P. K. et al. Carbon dioxide capture in a self-assembled organic nanochannels. Chem. Mater. 19, 3355–3357 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Thallapally, P. K. et al. Gas-induced transformation and expansion of a non-porous organic solid. Nature Mater. 7, 146–150 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Langley, P. J. & Hulliger, J. Nanoporous and mesoporous organic structures: New openings for materials research. Chem. Soc. Rev. 28, 279–291 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Sozzani, P., Bracco, S., Comotti, A., Ferretti, L. & Simonutti, R. Methane and carbon dioxide storage in a porous van der Waals crystal. Angew. Chem. Int. Ed. 44, 1816–1820 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Barrer, R. M. & Shanson, V. H. Dianin’s compound as a zeolitic sorbent. J. Chem. Soc. Chem. Commun. 333–334 (1976).

  11. 11

    Lim, S. et al. Cucurbit[6]uril: Organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. Angew. Chem. Int. Ed. 47, 3352–3355 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Comotti, A., Bracco, S., Distefano, G. & Sozzani, P. Methane, carbon dioxide and hydrogen storage in nanoporous dipeptide-based materials. Chem. Commun. 284–286 (2009).

  13. 13

    Sudik, A. C. et al. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal–organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc. 127, 7110–7118 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Fujita, M. et al. Molecular paneling via coordination. Chem. Commun. 509–518 (2001).

  15. 15

    Budd, P. M. et al. Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materials. Chem. Commun. 230–231 (2004).

  16. 16

    Bradshaw, D. et al. Design, chirality, and flexibility in nanoporous molecule-based materials. Acc. Chem. Res. 38, 273–282 (2005).

    CAS  Article  Google Scholar 

  17. 17

    El-Kaderi, H. M. et al. Designed synthesis of 3D covalent organic frameworks. Science 316, 268–272 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Conway, J. H. & Torquato, S. Packing, tiling, and covering with tetrahedra. Proc. Natl Acad. Sci. USA 103, 10612–10617 (2006).

    CAS  Article  Google Scholar 

  20. 20

    MacGillivray, L. R. & Atwood, J. L. Structural classification and general principles for the design of spherical molecular hosts. Angew. Chem. Int. Ed. 38, 1019–1034 (1999).

    Article  Google Scholar 

  21. 21

    Furutani, Y. et al. In situ spectroscopic, electrochemical, and theoretical studies of the photoinduced host–guest electron transfer that precedes unusual host-mediated alkane photooxidation. J. Am. Chem. Soc. 131, 4764–4768 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Liu, X. J., Liu, Y., Li, G. & Warmuth, R. One-pot, 18-component synthesis of an octahedral nanocontainer molecule. Angew. Chem. Int. Ed. 45, 901–904 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Mastalerz, M. One-pot synthesis of a shape-persistent endo-functionalised nano-sized adamantoid compound. Chem. Commun. 4756–4758 (2008).

  24. 24

    Skowronek, P. & Gawronski, J. Chiral iminospherand of a tetrahedral symmetry spontaneously assembled in a [6+4] cycloaddition. Org. Lett. 10, 4755–4758 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Mecozzi, S. & Rebek, J. The 55% solution: A formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Graf, E. & Lehn, J. M. Synthesis and cryptate complexes of a spheroidal macrotricyclic ligand with octahedrotetrahedral coordination. J. Am. Chem. Soc. 97, 5022–5024 (1975).

    CAS  Article  Google Scholar 

  27. 27

    Stang, P. J., Olenyuk, B., Muddiman, D. C. & Smith, R. D. Transition-metal-mediated rational design and self-assembly of chiral, nanoscale supramolecular polyhedra with unique T symmetry. Organometallics 16, 3094–3096 (1997).

    CAS  Article  Google Scholar 

  28. 28

    Fiedler, D. et al. Selective molecular recognition, C–H bond activation, and catalysis in nanoscale reaction vessels. Acc. Chem. Res. 38, 349–358 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Ajami, D. & Rebek, J. Gas behaviour in self-assembled capsules. Angew. Chem. Int. Ed. 47, 6059–6061 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Iyer, K. S., Norret, M., Dalgarno, S. J., Atwood, J. L. & Raston, C. L. Loading molecular hydrogen cargo within viruslike nanocontainers. Angew. Chem. Int. Ed. 47, 6362–6366 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Soldatov, D. V. et al. α- and β-bis(1,1,1-trifluoro-5,5-dimethyl-5-methoxyacetylacetonato)copper(II ): Transforming the dense polymorph into a versatile new microporous framework. J. Am. Chem. Soc. 121, 4179–4188 (1999).

    CAS  Article  Google Scholar 

  32. 32

    Soldatov, D. V. & Ripmeester, J. A. Inclusion in microporous β-bis(1,1,1-trifluoro-5,5-dimethyl-5-methoxyacetylacetonato)copper(II), an organic zeolite mimic. Chem. Mater. 12, 1827–1839 (2000).

    CAS  Article  Google Scholar 

  33. 33

    Lin, X. et al. High H2 adsorption by coordination-framework materials. Angew. Chem. Int. Ed. 45, 7358–7364 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Weber, J., Antonietti, M. & Thomas, A. Microporous networks of high-performance polymers: Elastic deformations and gas sorption properties. Macromolecules 41, 2880–2885 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Atwood, J. L., Barbour, L. J., Jerga, A. & Schottel, B. L. Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science 298, 1000–1002 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Banerjee, R. et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 131, 3875–3877 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Tian, J., Thallapally, P. K., Dalgarno, S. J., McGrail, P. B. & Atwood, J. L. Amorphous molecular organic solids for gas adsorption. Angew. Chem. Int. Ed. 48, 5492–5495 (2009).

    CAS  Article  Google Scholar 

  38. 38

    O’Reilly, N., Giri, N. & James, S. L. Porous liquids. Chem. Eur. J. 13, 3020–3025 (2007).

    Article  Google Scholar 

  39. 39

    Zhang, J.-X., Zheng, Y.-P., Yu, P.-Y., Mo, S. & Wang, R.-M. Modified carbon nanotubes with liquid-like behaviour at 45 C. Carbon 47, 2776–2781 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Physical Sciences Research Council (EPSRC) for financial support under grant EPSRC/C511794 and Kaneka Corporation, Japan, for financial supporting a research visit for T.T. We thank the STFC for access to Diamond and M.J. Rosseinsky for helpful advice. A.C. is a Royal Society Wolfson Research Merit Award holder.

Author information

Affiliations

Authors

Contributions

T.T., S.I.S., S.J., D.J.A. and S.S. synthesized cages 13, J.T.A.J. and R.C. carried out volumetric sorption measurements, D.B. carried out gravimetric sorption measurements, T.H. carried out microscopy, desolvation studies and TGA, A.T. constructed the molecular models and carried out the sorption simulations, J.B., A.M.Z.S., S.Y.C., C.T., S.T., J.P. and A.S. carried out the crystallography; in particular J.B. and A.S. solved the crucial first structure for the cage 1 ethyl acetate solvate. J.T.A.J. discovered the porous polymorph of 1. A.I.C. conceived the experiments; all authors contributed to writing the paper.

Corresponding author

Correspondence to Andrew I. Cooper.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2191 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tozawa, T., Jones, J., Swamy, S. et al. Porous organic cages. Nature Mater 8, 973–978 (2009). https://doi.org/10.1038/nmat2545

Download citation

Further reading