Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hindered rolling and friction anisotropy in supported carbon nanotubes

Abstract

Carbon nanotubes (CNTs) are well known for their exceptional thermal, mechanical and electrical properties1,2,3,4,5,6. For many CNT applications it is of the foremost importance to know their frictional properties. However, very little is known about the frictional forces between an individual nanotube and a substrate or tip. Here, we present a combined theoretical and experimental study of the frictional forces encountered by a nanosize tip sliding on top of a supported multiwall CNT along a direction parallel or transverse to the CNT axis. Surprisingly, we find a higher friction coefficient in the transverse direction compared with the parallel direction. This behaviour is explained by a simulation showing that transverse friction elicits a soft ‘hindered rolling’ of the tube and a frictional dissipation that is absent, or partially absent for chiral CNTs, when the tip slides parallel to the CNT axis. Our findings can help in developing better strategies for large-scale CNT assembling and sorting on a surface.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Friction measurements on CNTs.
Figure 2: Frictional forces for transverse and longitudinal sliding.
Figure 3: Shear strength and adhesion force.
Figure 4: Molecular dynamics simulation of the tip–nanotube interaction.
Figure 5: Molecular dynamics simulation of tip–nanotube friction force versus normal load.

References

  1. 1

    Avouris, Ph. et al. IEEE International Electron Devices Meeting 2004, Tech. Dig. 525–529 (2004).

    Google Scholar 

  2. 2

    Cummings, J. & Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000).

    Article  Google Scholar 

  3. 3

    Fennimore, A. M. et al. Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Klinke, C., Hannon, J. B., Afzali, A. & Avouris, P. Field-effect transistors assembled from functionalized carbon nanotubes. Nano Lett. 6, 906–910 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Qu, L., Dai, L., Stone, M., Xia, Z. & Wang, Z. L. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322, 238–242 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Vigolo, B., Poulin, P., Lucas, M., Launois, P. & Bernier, P. Improved structure and properties of single-wall carbon nanotube spun fibers. Appl. Phys. Lett. 81, 1210–1212 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Persson, B. N. J., Tartaglino, U., Albohr, O. & Tosatti, E. Sealing is at the origin of rubber slipping on wet roads. Nature Mater. 3, 882–885 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Cummings, J. & Zettl, A. Localization and nonlinear resistance in telescopically extended nanotubes. Phys. Rev. Lett. 93, 086801 (2004).

    Article  Google Scholar 

  9. 9

    Forró, L. Nanotechnology: Beyond Gedanken experiments. Science 289, 560–561 (2000).

    Article  Google Scholar 

  10. 10

    Yu, M. F., Yakobson, B. I. & Ruoff, R. S. Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes. J. Phys. Chem. B 104, 8764–8767 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Kis, A., Jensen, K., Aloni, S., Mickelson, W. & Zettl, A. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Phys. Rev. Lett. 97, 025501 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Bourlon, B., Glattli, D. C., Miko, C., Forro, L. & Bachtold, A. Carbon nanotube based bearing for rotational motions. Nano Lett. 4, 709–712 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Servantie, J. & Gaspard, P. Rotational dynamics and friction in double-walled carbon nanotubes. Phys. Rev. Lett. 97, 186106 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Falvo, M. R. et al. Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397, 236–238 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Bhushan, B., Ling, X., Jungen, A. & Hierold, C. Adhesion and friction of a multiwalled carbon nanotube sliding against single-walled carbon nanotube. Phys. Rev. B 77, 165428 (2008).

    Article  Google Scholar 

  16. 16

    Palaci, I., Fedrigo, S., Brune, H., Klinke, C. & Riedo, E. Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett. 94, 175502 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Johnson, K. L. Contact Mechanics (Cambridge Univ. Press, 1987).

    Google Scholar 

  18. 18

    Schwarz, U. D., Zworner, O., Koster, P. & Wiesendanger, R. Quantitative analysis of the frictional properties of solid materials at low loads. 1. Carbon compounds. Phys. Rev. B 56, 6987–6996 (1997).

    CAS  Article  Google Scholar 

  19. 19

    Carpick, R. W., Ogletree, D. F. & Salmeron, M. Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70, 1548–1550 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Ritter, C., Heyde, M., Stegemann, B., Rademann, K. & Schwarz, U. D. Contact-area dependence of frictional forces: Moving adsorbed antimony nanoparticles. Phys. Rev. B 71, 085405 (2005).

    Article  Google Scholar 

  21. 21

    Hirahara, K. et al. Chirality correlation in double-wall carbon nanotubes as studied by electron diffraction. Phys. Rev. B 73, 195420 (2006).

    Article  Google Scholar 

  22. 22

    Geblinger, N., Ismach, A. & Joselevich, E. Self-organized nanotube serpentines. Nature Nanotech. 3, 195–200 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Sader, J. E., Chon, J. W. M. & Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Ogletree, D. F., Carpick, R. W. & Salmeron, M. Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996).

    CAS  Article  Google Scholar 

  25. 25

    Arthur, P. & Boresi, O. M. S. Advanced Mechanics of Materials 2nd edn (Wiley, 1986).

    Google Scholar 

  26. 26

    Luedtke, W. D. & Landman, U. Slip diffusion and levy flights of an adsorbed gold nanocluster. Phys. Rev. Lett. 82, 3835–3838 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Brenner, D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990).

    CAS  Article  Google Scholar 

  28. 28

    Kolmogorov, A. N. & Crespi, V. H. Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B 71, 235415 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

M.L. was financially supported by the Office of Basic Energy Sciences of the DOE (DE-FG02-06ER46293). E.R. acknowledges the NSF (DMR-0120967 and DMR-0706031) and DOE (DE-FG02-06ER46293) for summer salary support. Work in Trieste was supported by CNR under EUROCORES/FANAS/AFRI, as well as by a PRIN/COFIN contract.

Author information

Affiliations

Authors

Contributions

M.L. carried out the experiments and analysed the data. X.Z. carried out the molecular dynamics simulations and analysed the data. C.K. carried out the transmission electron microscopy measurements, provided the CNTs and contributed with active communication in carrying out the experiments. I.P. carried out the initial part of the experiments. E.T. conceived and designed the theory and analysed the data. E.R. conceived and designed the experiments and analysed the data. All authors contributed in writing the letter.

Corresponding authors

Correspondence to Erio Tosatti or Elisa Riedo.

Supplementary information

Supplementary Information

Supplementary Information (PDF 526 kb)

Supplementary Information

Supplementary Movie 1 (MPG 742 kb)

Supplementary Information

Supplementary Movie 2 (MPG 290 kb)

Supplementary Information

Supplementary Movie 3 (MPG 190 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lucas, M., Zhang, X., Palaci, I. et al. Hindered rolling and friction anisotropy in supported carbon nanotubes. Nature Mater 8, 876–881 (2009). https://doi.org/10.1038/nmat2529

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing