Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates


Solar energy represents one of the most abundant and yet least harvested sources of renewable energy. In recent years, tremendous progress has been made in developing photovoltaics that can be potentially mass deployed1,2,3. Of particular interest to cost-effective solar cells is to use novel device structures and materials processing for enabling acceptable efficiencies4,5,6. In this regard, here, we report the direct growth of highly regular, single-crystalline nanopillar arrays of optically active semiconductors on aluminium substrates that are then configured as solar-cell modules. As an example, we demonstrate a photovoltaic structure that incorporates three-dimensional, single-crystalline n-CdS nanopillars, embedded in polycrystalline thin films of p-CdTe, to enable high absorption of light and efficient collection of the carriers. Through experiments and modelling, we demonstrate the potency of this approach for enabling highly versatile solar modules on both rigid and flexible substrates with enhanced carrier collection efficiency arising from the geometric configuration of the nanopillars.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: CdS/CdTe SNOP cells.
Figure 2: SNOP cell at different stages of fabrication.
Figure 3: Performance characterization of a representative SNOP cell.
Figure 4: Effects of the nanopillar geometric configuration on the device performance.
Figure 5: Mechanically flexible SNOP cells.


  1. Bai, Y. et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nature Mater. 7, 626–630 (2008).

    Article  CAS  Google Scholar 

  2. Kim, J. Y. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    Article  CAS  Google Scholar 

  3. Yoon, J. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nature Mater. 7, 907–915 (2008).

    Article  CAS  Google Scholar 

  4. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. D. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

    Article  CAS  Google Scholar 

  5. Tian, B. Z. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007).

    Article  CAS  Google Scholar 

  6. Kempa, T. J. et al. Single and tandem axial p–i–n nanowire photovoltaic devices. Nano Lett. 8, 3456–3460 (2008).

    Article  CAS  Google Scholar 

  7. Möller, H. J. Semiconductors for Solar Cells (Artech House, 1993).

    Google Scholar 

  8. Beaucarne, G. et al. Epitaxial thin-film Si solar cells. Thin Solid Films 511, 533–542 (2006).

    Article  Google Scholar 

  9. Van Nieuwenhuysen, K. et al. Epitaxially grown emitters for thin film crystalline silicon solar cells. Thin Solid Films 517, 383–384 (2008).

    Article  CAS  Google Scholar 

  10. Schermer, J. J. et al. Thin-film GaAs epitaxial lift-off solar cells for space applications. Prog. Photovoltaics 13, 587–596 (2005).

    Article  CAS  Google Scholar 

  11. Garnett, E. C. & Yang, P. D. Silicon nanowire radial p–n junction solar cells. J. Am. Chem. Soc. 130, 9224–9225 (2008).

    Article  CAS  Google Scholar 

  12. Czaban, J. A., Thompson, D. A. & LaPierre, R. R. GaAs core–shell nanowires for photovoltaic applications. Nano Lett. 9, 148–154 (2009).

    Article  CAS  Google Scholar 

  13. Tsakalakos, L. et al. Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117 (2007).

    Article  Google Scholar 

  14. Kelzenberg, M. D. et al. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8, 710–714 (2008).

    Article  CAS  Google Scholar 

  15. Fahrenbruch, A. L. & Bube, R. H. Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion (Academic, 1983).

    Google Scholar 

  16. Kayes, B. M., Atwater, H. A. & Lewis, N. S. Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).

    Article  Google Scholar 

  17. Spurgeon, J. M., Atwater, H. A. & Lewis, N. S. A comparison between the behavior of nanorod array and planar Cd(Se, Te) photoelectrodes. J. Phys. Chem. C 112, 6186–6193 (2008).

    Article  CAS  Google Scholar 

  18. Hu, L. & Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249–3252 (2007).

    Article  CAS  Google Scholar 

  19. Lee, W., Scholz, R., Niesch, K. & Gosele, U. A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew. Chem. Int. Ed. 44, 6050–6054 (2005).

    Article  CAS  Google Scholar 

  20. Li, J., Papadopoulos, C. & Xu, J. Nanoelectronics—growing Y-junction carbon nanotubes. Nature 402, 253–254 (1999).

    Article  CAS  Google Scholar 

  21. Fan, Z. Y. et al. Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays. Appl. Phys. Lett. 89, 213110 (2006).

    Article  Google Scholar 

  22. Steinhart, M. et al. Polymer nanotubes by wetting of ordered porous templates. Science 296, 1997–1997 (2002).

    Article  CAS  Google Scholar 

  23. Masuda, H. et al. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770–2772 (1997).

    Article  CAS  Google Scholar 

  24. Mikulskas, I., Juodkazis, S., Tomasiunas, R. & Dumas, J. G. Aluminum oxide photonic crystals grown by a new hybrid method. Adv. Mater. 13, 1574–1577 (2001).

    Article  CAS  Google Scholar 

  25. Corwine, C. R., Pudov, A. O., Gloeckler, M., Demtsu, S. H. & Sites, J. R. Copper inclusion and migration from the back contact in CdTe solar cells. Sol. Energy Mater. Sol. Cells 82, 481–489 (2004).

    CAS  Google Scholar 

  26. Sze, S. M. Physics of Semiconductor Devices (Wiley–Interscience, 1981).

    Google Scholar 

  27. Marsillac, S., Parikh, V. Y. & Compaan, A. D. Ultra-thin bifacial CdTe solar cell. Sol. Energy Mater. Sol. Cells 91, 1398–1402 (2007).

    Article  CAS  Google Scholar 

  28. Fan, Z. & Javey, A. Solar cells on curtains. Nature Mater. 7, 835–836 (2008).

    Article  CAS  Google Scholar 

  29. Lungenschmied, C. et al. Flexible, long-lived, large-area, organic solar cells. Sol. Energy Mater. Sol. Cells 91, 379–384 (2007).

    Article  CAS  Google Scholar 

  30. Nakamura, K., Fujihara, T., Toyama, T. & Okamoto, H. Influence of CdCl2 treatment on structural and electrical properties of highly efficient 2- μm-thick CdS/CdTe thin film solar cells. Japan. J. Appl. Phys. 1 41, 4474–4480 (2002).

    Article  CAS  Google Scholar 

Download references


We acknowledge G. F. Brown and J. Wu for help with simulations. This work was financially supported by Berkeley Sensor and Actuator Center. J. C. H. acknowledges an Intel Graduate Fellowship. All fabrication was carried out in the Berkeley Microfabrication Laboratory. The solar-cell experimental characterization was done at LBNL, and was supported by the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations



Z.F., H.R., J.D., A.M., O.E., Y.-L.C. and A.J. designed the experiments. Z.F., H.R., J.D., A.M., O.E., Y.-L.C., J.C.H., T.T., L.A.R., S.N., K.Y., M.W., J.W.A. and A.J. carried out experiments. Z.F., P.W.L., J.W.A. and A.J. carried out simulations. Z.F., H.R., J.D., A.M., O.E., Y.-L.C., J.C.H., T.T., L.A.R., P.W.L., S.N., K.Y., J.W.A. and A.J. contributed to analysing the data. Z.F. and A.J. wrote the paper and all authors provided feedback.

Corresponding author

Correspondence to Ali Javey.

Supplementary information

Supplementary Information

Supplementary Information (PDF 986 kb)

Supplementary Information

Supplementary Movie (MPG 12148 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fan, Z., Razavi, H., Do, Jw. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature Mater 8, 648–653 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing