Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain

Abstract

Ni–Ti is one of the most popular shape-memory alloys, a phenomenon resulting from a martensitic transformation. Commercial Ni–Ti-based alloys are often thermally treated to contain Ni4Ti3 precipitates. The presence of these precipitates can introduce an extra transformation step related to the so-called R-phase. It is believed that the strain field surrounding the precipitates, caused by the matrix–precipitate lattice mismatch, lies at the origin of this intermediate transformation step. Atomic-resolution transmission electron microscopy in combination with geometrical phase analysis is used to measure the elastic strain field surrounding these precipitates. By combining measurements from two different crystallographic directions, the three-dimensional strain matrix is determined from two-dimensional measurements. Comparison of the measured strain matrix to the eigenstrain of the R-phase shows that both are very similar and that the introduction of the R-phase might indeed compensate the elastic strain introduced by the precipitate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of lens-shaped Ni4Ti3 precipitates.
Figure 2: Observation of Ni4Ti3 precipitates in a zone orientation.
Figure 3: Observation of a precipitate in a orientation.

Similar content being viewed by others

References

  1. Lee, M. L., Fitzgerald, E. A., Bulsara, M. T., Currie, M. T. & Lochtefeld, A. J. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. Appl. Phys. 97, 011101 (2005).

    Article  Google Scholar 

  2. Antoniadis, D. A. et al. Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations. IBM J. Res. Dev. 50, 363–376 (2006).

    Article  CAS  Google Scholar 

  3. Zhang, P. et al. Direct strain measurement in a 65 nm node strained silicon transistor by convergent-beam electron diffraction. Appl. Phys. 89, 161907 (2006).

    Google Scholar 

  4. Zschech, E., Whelan, C. & Mikolajick, T. Materials for Information Technology 99–108 (Springer, 2005).

    Book  Google Scholar 

  5. Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HRTEM micrographs. Ultramicroscopy 57, 131–146 (1998).

    Article  Google Scholar 

  6. Rouvière, J. L. & Sarigiannidou, E. Theoretical discussions on the geometrical phase analysis. Ultramicroscopy 106, 1–17 (2005).

    Article  Google Scholar 

  7. Hÿtch, M. J., Putaux, J. L. & Penisson, J. M. Measurement of the displacement field of dislocations to 0.03 angstrom by electron microscopy. Nature 423, 270–273 (2003).

    Article  Google Scholar 

  8. Johnson, C. L. et al. Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nature Mater. 7, 120–124 (2008).

    Article  CAS  Google Scholar 

  9. Hue, F., Hytch, M., Bender, H., Houdellier, F. & Claverie, A. Direct mapping of strain in a strained silicon transistor by high-resolution electron microscopy. Phys. Rev. Lett. 100, 156602 (2008).

    Article  Google Scholar 

  10. Christiansen, S., Albrecht, M., Strunk, H. P. & Maier, H. J. Strained state of Ge(Si) islands on Si: Finite element calculations and comparison to convergent beam electron-diffraction measurements. Appl. Phys. Lett. 64, 3617–3618 (1994).

    Article  CAS  Google Scholar 

  11. Khalil-Allafi, J., Dlouhy, A. & Eggeler, G. Ni4Ti3-precipitation during ageing of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater. 50, 4255–4274 (2002).

    Article  CAS  Google Scholar 

  12. Nishida, M., Wayman, C. M. & Honma, T. Precipitation processes in near equiatomic TiNi shape memory alloys. Metall. Trans. A 17A, 1505–1515 (1986).

    Article  CAS  Google Scholar 

  13. Tadaki, T., Nakata, Y., Shimizu, K. & Otsuka, K. Crystal structure, composition and morphology of a precipitate in an aged Ti-51 at%Ni shape memory alloy. Trans. Japan Inst. Met. 27, 731–740 (1986).

    Article  CAS  Google Scholar 

  14. Tirry, W., Schryvers, D., Jorissen, K. & Lamoen, D. Electron diffraction structure refinement of Ni4Ti3 precipitates in Ni52Ti48 . Acta Crystallogr. B 62, 966–971 (2006).

    Article  CAS  Google Scholar 

  15. Bataillard, L., Bidaux, J.-E. & Gotthardt, R. Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in situ transmission electron microscopy observations. Phil. Mag. A 78, 327–344 (1998).

    Article  CAS  Google Scholar 

  16. Carroll, M. C., Somsen, Ch. & Eggeler, G. Multiple-step martensitic transformations in Ni-rich NiTi shape memory alloys. Scr. Mater. 50, 187–192 (2004).

    Article  CAS  Google Scholar 

  17. Fan, G. et al. Origin of abnormal multi-stage martensitic transformation behaviour in aged Ni-rich Ti–Ni shape memory alloys. Acta Mater. 52, 4351–4362 (2004).

    Article  CAS  Google Scholar 

  18. Michutta, J., Somsen, Ch., Yawny, A., Dlouhy, A. & Eggeler, G. Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates. Acta Mater. 54, 3525–3542 (2006).

    Article  CAS  Google Scholar 

  19. Morawiec, H., Ilczuk, J., Stróż, D., Goryczka, T. & Chrobak, D. Two stage martensitic transformation in NiTi alloys caused by stress fields. J. de Phys. IV France 7, 155–159 (1997).

    Google Scholar 

  20. Dlouhy, A., Khalil-Allafi, J. & Eggeler, G. Multiple-step martensitic transformations in Ni-rich NiTi alloys–an in situ transmission electron microscopy investigation. Phil. Mag. A 3, 339–364 (2003).

    Article  Google Scholar 

  21. Stróż, D. Proc. EMC 2004: 13th European Microscopy Congress Vol. CD (Belgium Society for Microscopy, 2004).

    Google Scholar 

  22. Tirry, W. & Schryvers, D. Quantitative determination of strain fields around Ni4Ti3 precipitates in NiTi. Acta Mater. 53, 1041–1049 (2005).

    Article  CAS  Google Scholar 

  23. Van Dyck, D., Van Tendeloo, G. & Amelinckx, S. Direct interpretation of high resolution electron images of substitutional alloy systems with a column structure. Ultramicroscopy 10, 263–280 (1982).

    Article  CAS  Google Scholar 

  24. Gall, K., Sehitoglu, H., Chumlyakov, Y. I., Kireeva, I. V. & Maier, H. J. The influence of ageing on critical transformation stress levels and martensite start temperatures in NiTi: Part I—aged microstructure and micro-mechanical modelling. J. Eng. Mater. Tech. 121, 19–27 (1999).

    Article  CAS  Google Scholar 

  25. Khalil-Allafi, J. et al. The influence of temperature on lattice parameters of coexisting phases in NiTi shape memory alloys—a neutron diffraction study. Mater. Sci. Eng. A 378, 161–164 (2004).

    Article  Google Scholar 

  26. Bhattacharya, K. Microstructure of Martensite, Why it Forms and How it Gives Rise to the Shape-Memory Effect (Oxford Univ. Press, 2003).

    Google Scholar 

  27. Van Aert, S., den Dekker, A. J., Van Dyck, D. & van den Bos, A. High-resolution electron microscopy and electron tomography: Resolution versus precision. J. Struct. Biol. 138, 21–33 (2002).

    Article  CAS  Google Scholar 

  28. Yang, Z., Tirry, W., Lamoen, D., Kulkova, S. & Schryvers, D. Electron energy-loss spectroscopy and first-principles calculation studies on a Ni–Ti shape memory alloy. Acta Mater. 56, 395–404 (2008).

    Article  CAS  Google Scholar 

  29. Yang, Z., Tirry, W. & Schryvers, D. Analytical TEM investigations on concentration gradients surrounding Ni4Ti3 precipitates in Ni–Ti shape memory material. Scr. Mater. 52, 1129–1134 (2005).

    Article  CAS  Google Scholar 

  30. Šittner, P., Landa, M., Lukáš, P. & Novák, V. R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals. Mech. Mater. 38, 475–492 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Belspo project entitled ‘Physics based multilevel mechanics of metals‘ under the IAP framework, contract number P6-24. D. Schryvers would like to thank MULTIMAT ‘Multi-scale modelling and characterization for phase transformations in advanced materials’, a Marie Curie Research Training Network (MRTN-CT-2004-505226) for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

W.T. carried out the microscopy, analysed the images, evaluated the obtained results and wrote the paper, D.S. provided the project planning, contributed to the evaluation, discussed the data and commented on the paper.

Corresponding author

Correspondence to Wim Tirry.

Supplementary information

Supplementary Information

Supplementary Information (PDF 283 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tirry, W., Schryvers, D. Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain. Nature Mater 8, 752–757 (2009). https://doi.org/10.1038/nmat2488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing