Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Switchable self-protected attractions in DNA-functionalized colloids

Abstract

Surface functionalization with DNA is a powerful tool for guiding the self-assembly of nanometre- and micrometre-sized particles1,2,3,4,5,6,7,8,9,10,11. Complementary ‘sticky ends’ form specific inter-particle links and reproducibly bind at low temperature and unbind at high temperature. Surprisingly, the ability of single-stranded DNA to form folded secondary structures has not been explored for controlling (nano) colloidal assembly processes, despite its frequent use in DNA nanotechnology12,13,14. Here, we show how loop and hairpin formation in the DNA coatings of micrometre-sized particles gives us in situ control over the inter-particle binding strength and association kinetics. We can finely tune and even switch off the attractions between particles, rendering them inert unless they are heated or held together—like a nano-contact glue. The novel kinetic control offered by the switchable self-protected attractions is explained with a simple quantitative model that emphasizes the competition between intra- and inter-particle hybridization, and the practical utility is demonstrated by the assembly of designer clusters in concentrated suspensions. With self-protection, both the suspension and assembly product are stable, whereas conventional attractive colloids would quickly aggregate. This remarkable functionality makes our self-protected colloids a novel material that greatly extends the utility of DNA-functionalized systems, enabling more versatile, multi-stage assembly approaches.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Conventional and self-protected DNA-mediated interaction schemes.
Figure 2: Association–dissociation kinetics for conventional and self-protected interactions.
Figure 3: Temperature response and proximity response of the switchable self-protected interactions.
Figure 4: Directed assembly using self-protected interactions as a ‘nano-contact glue’.
Figure 5: Experimental and modelled association–dissociation kinetics.

References

  1. 1

    Maye, M. M., Nykypanchuk, D., van der Lelie, D. & Gang, O. DNA-regulated micro- and nanoparticle assembly. Small 3, 1678–1682 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Tkachenko, A. V. Morphological diversity of DNA-colloidal self-assembly. Phys. Rev. Lett. 89, 148303 (2002).

    Article  Google Scholar 

  4. 4

    Licata, N. A. & Tkachenko, A. V. Errorproof programmable self-assembly of DNA-nanoparticle clusters. Phys. Rev. E 74, 041406 (2006).

    Article  Google Scholar 

  5. 5

    Biancaniello, P. L., Kim, A. J. & Crocker, J. C. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94, 058302 (2005).

    Article  Google Scholar 

  6. 6

    Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Kim, A. J., Scarlett, R., Biancaniello, P. L., Sinno, T. & Crocker, J. C. Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly. Nature Mater. 8, 52–55 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Xiong, H., van der Lelie, D. & Gang, O. Phase behavior of nanoparticles assembled by DNA linkers. Phys. Rev. Lett. 102, 015504 (2009).

    Article  Google Scholar 

  10. 10

    Milam, V. T., Hiddessen, A. L., Crocker, J. C., Graves, D. J. & Hammer, D. A. DNA-driven assembly of bidisperse, micron-sized colloids. Langmuir 19, 10317–10323 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Valignat, M. P., Theodoly, O., Crocker, J. C., Russel, W. B. & Chaikin, P. M. Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc. Natl Acad. Sci. USA 102, 4225–4229 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Yurke, B., Turberfield, A. J., Mills, A. P. J., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Yan, H., Zhang, X., Shen, Z. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Jin, R., Wu, G., Li, Z., Mirkin, C. A. & Schatz, G. C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125, 1643–1654 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-based approach for interparticle interaction control. Langmuir 23, 6305–6314 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Dreyfus, R. et al. Simple quantitative model for the reversible association of DNA coated colloids. Phys. Rev. Lett. 102, 048301 (2009).

    Article  Google Scholar 

  18. 18

    Bonnet, G., Krichevsky, O. & Libchaber, A. Kinetics of conformational fluctuations in DNA hairpin-loops. Proc. Natl Acad. Sci. USA 95, 8602–8606 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Baudry, J. et al. Acceleration of the recognition rate between grafted ligands and receptors with magnetic forces. Proc. Natl Acad. Sci. USA 103, 16076–16078 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Roichman, Y., Sun, B., Roichman, Y., Amato-Grill, J. & Grier, D. G. Optical forces arising from phase gradients. Phys. Rev. Lett. 100, 013602 (2008).

    Article  Google Scholar 

  22. 22

    Schmatko, T. et al. A finite-cluster phase in λ-DNA-coated colloids. Soft Matter 3, 703–706 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Smoluchowski, M. V. Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen. Z. Phys. Chem. 92, 129–168 (1917).

    Google Scholar 

  24. 24

    Dimitrov, R. A. & Zuker, M. Prediction of hybridization and melting for double-stranded nucleic acids. Biophys. J. 87, 215–226 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Crocker, J. C. Nanomaterials: Golden handshake. Nature 451, 528–529 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Cordier, P., Tournilhac, F., Soulie-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    CAS  Article  Google Scholar 

  27. 27

    von Andrian, U. H. et al. Two-step model of leukocyte endothelial cell interaction in inflammation: Distinct roles for LECAM-1 and the leukocyte β2 integrins in vivo. Proc. Natl Acad. Sci. USA 88, 7538–7542 (1991).

    CAS  Article  Google Scholar 

  28. 28

    Caruthers, M. H. Gene synthesis machines: DNA chemistry and its uses. Science 230, 281–285 (1985).

    CAS  Article  Google Scholar 

  29. 29

    Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Zuker, M. <http://mfold.bioinfo.rpi.edu/>.

  31. 31

    Leunissen, M. E. et al. Towards self-replicating materials of DNA-functionalized colloids. Soft Matter 10.1039/B817679E (2009).

Download references

Acknowledgements

We thank D. J. Pine and M. Zuker for useful discussions. This work was supported partially by the MRSEC Program of the National Science Foundation under Award Number DMR-0820341, by the Keck Foundation and the Netherlands Organisation for Scientific Research (NWO).

Author information

Affiliations

Authors

Contributions

M.E.L. carried out the experiments, theoretically modelled the data and wrote the manuscript. R.D. was involved in setting up the experiments and the development of the model, F.C.C. and D.G.G. participated in the optical laser tweezer experiments, R.S. and N.C.S. synthesized DNA and P.M.C. supervised the research. Everybody contributed important conceptual insight.

Corresponding author

Correspondence to Mirjam E. Leunissen.

Supplementary information

Supplementary Information

Supplementary Information (PDF 480 kb)

Supplementary Information

Supplementary Movie 1 (MPG 1266 kb)

Supplementary Information

Supplementary Movie 2 (MPG 1398 kb)

Supplementary Information

Supplementary Movie 3 (MPG 3302 kb)

Supplementary Information

Supplementary Movie 4 (MPG 1258 kb)

Supplementary Information

Supplementary Movie 5 (MPG 1440 kb)

Supplementary Information

Supplementary Movie 6 (MPG 672 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leunissen, M., Dreyfus, R., Cheong, F. et al. Switchable self-protected attractions in DNA-functionalized colloids. Nature Mater 8, 590–595 (2009). https://doi.org/10.1038/nmat2471

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing