Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films

Abstract

Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor–insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p–n junction can be created, erased and inverted in this material. A ‘dome-like’ feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of 1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural characterization of the Ca-doping effect on BiFeO3 films.
Figure 2: Electric-field-driven phase transition between a ferroelectric, insulating state and a conducting state.
Figure 3: Local current (I)–voltage (V) characteristics.
Figure 4: Reproducing the electronic conduction switching in ultrahigh vacuum c-AFM measurement and in the conventional capacitor geometry.
Figure 5: The mechanism of the electronic conduction switching.
Figure 6: Controlling oxygen vacancy concentration in-plane.

Similar content being viewed by others

References

  1. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    CAS  Google Scholar 

  2. Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413–415 (1994).

    Article  CAS  Google Scholar 

  3. Uehara, M., Mori, S., Chen, C. H. & Cheong, S. W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999).

    Article  CAS  Google Scholar 

  4. Verwey, E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327–328 (1939).

    Article  CAS  Google Scholar 

  5. Liu, Y., Haviland, D. B., Nease, B. & Goldman, A. M. Insulator-to-superconductor transition in ultrathin films. Phys. Rev. B 47, 5931–5946 (1993).

    Article  CAS  Google Scholar 

  6. Ren, X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nature Mater. 3, 91–94 (2004).

    Article  CAS  Google Scholar 

  7. Agrawal, R. C. & Gupta, R. K. Superionic solids: Composite electrolyte phase—an overview. J. Mater. Sci. 34, 1131–1162 (1999).

    Article  CAS  Google Scholar 

  8. Hemberger, J. et al. Quantum paraelectric and induced ferroelectric states in SrTiO3 . J. Phys. Condens. Matter 8, 4673–4690 (1996).

    Article  CAS  Google Scholar 

  9. Xu, G., Zhong, Z., Bing, Y., Ye, Z.-G. & Shirane, G. Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Naure Mater. 5, 134–140 (2006).

    Article  CAS  Google Scholar 

  10. Meijer, G. I. et al. Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3 . Phys. Rev. B 72, 155102 (2005).

    Article  Google Scholar 

  11. Ahn, C. H., Triscone, J.-M. & Mannhart, J. Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003).

    Article  CAS  Google Scholar 

  12. Ahn, C. H. et al. Electricstatic modification of novel materials. Rev. Mod. Phys. 78, 1185–1212 (2006).

    Article  CAS  Google Scholar 

  13. Yamamura, H. & Kiriyama, R. Oxygen vacancies in the perovskite-type ferrites. I. Relation between oxygen vacancies and structures in the solid solution systems Sr1−xMxFeO3−δ (M=yittrium, lanthanum, bismuth, and indium). Nippon Kagaku Kaishi 2, 343–349 (1972).

    Article  Google Scholar 

  14. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    Article  CAS  Google Scholar 

  15. Ramesh, R. & Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  16. Cheong, S. W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  17. Roginska, Y. E., Tomashpo, Y. Y., Venevtse, Y. N., Petrov, V. M. & Zhdanov, G. S. Nature of dielectric and magnetic properties of BiFeO3 . Sov. Phys. JETP 23, 47–51 (1966).

    Google Scholar 

  18. Kiselev, S. V., Ozerov, R. P. & Zhdanov, G. S. Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov. Phys. Dokl. 7, 742–744 (1963).

    Google Scholar 

  19. Chu, Y. H. et al. Domain control in multiferroic BiFeO3 through substrate vicinality. Adv. Mater. 19, 2662–2666 (2007).

    Article  CAS  Google Scholar 

  20. Gavriliuk, A. G. et al. Another mechanism for the insulator–metal transition observed in Mott insulators. Phys. Rev. B 77, 155112 (2008).

    Article  Google Scholar 

  21. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  22. Palai, R. et al. β phase and γβ metal–insulator transition in multiferroic BiFeO3 . Phys. Rev. B 77, 014110 (2008).

    Article  Google Scholar 

  23. Brinkman, K., Iijima, T. & Takamura, H. Acceptor doped BiFeO3 ceramics: A new material for oxygen permeation membranes. Japan. J. Appl. Phys. 2 46, L93–L96 (2007).

    Article  CAS  Google Scholar 

  24. Khomchenko, V. A. et al. Synthesis and multiferroic properties of Bi0.8A0.2FeO3 (A=Ca, Sr, Pb) ceramics. Appl. Phys. Lett. 90, 242901 (2007).

    Article  Google Scholar 

  25. Li, J., Duan, Y., He, H. & Song, D. Crystal structure, electronic structure, and magnetic properties of bismuth-strontium ferrites. J. Alloys Compounds 315, 259–264 (2001).

    Article  CAS  Google Scholar 

  26. Pertsev, N. A., Zembilgotov, A. G. & Tagantsev, A. K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80, 1988–1991 (1998).

    Article  CAS  Google Scholar 

  27. Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    CAS  Google Scholar 

  28. Ederer, C. & Spaldin, N. A. Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95, 257601 (2005).

    Article  Google Scholar 

  29. Klie, R. F. & Browning, N. D. Characterization of oxygen ordering in (La,Sr)FeO3−δ by atomic resolution Z-contrast imaging and electron energy-loss spectroscopy. J. Electron Microscopy 51, S59–S66 (2002).

    Article  Google Scholar 

  30. Becerro, A. I. et al. The transition from short-range to long-range ordering of oxygen vacancies in CaFexTi1−xO3−x/2 perovskites. Phys. Chem. Chem. Phys. 2, 3933–3941 (2000).

    Article  CAS  Google Scholar 

  31. Grenier, J.-C., Pouchard, M. & Hagenmuller, P. Vacancy ordering in oxygen-deficient perovskite-related ferrites. Struct. Bond. 47, 1–25 (1981).

    Article  CAS  Google Scholar 

  32. Vashook, V. V., Daroukh, M. A. & Ullmann, H. Oxygen ion diffusion in perovskite-type oxides determined by permeation and by relaxation measurements. Ionics 7, 59–66 (2001).

    Article  CAS  Google Scholar 

  33. Mogilevsky, R. et al. Direct measurements of room-temperature oxygen diffusion in YBa2Cu3Ox . Phys. Rev. B 49, 6420–6423 (1994).

    Article  CAS  Google Scholar 

  34. Merkle, R. & Maier, J. How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material. Angew. Chem. Int. Ed. 47, 3874–3894 (2008).

    Article  CAS  Google Scholar 

  35. Zavaliche, F. et al. Ferroelectric domain structure in epitaxial BiFeO3 films. Appl. Phys. Lett. 87, 182912 (2005).

    Article  Google Scholar 

  36. Uchida, K., Tsuneyuki, S. & Schimizu, T. First principles calculations of carrier-doping effects in SrTiO3 . Phys. Rev. B 68, 174107 (2003).

    Article  Google Scholar 

  37. Blom, P. W. M., Wolf, R. M., Cillessen, J. F. M. & Krijn, M. P. C. M. Ferroelectric Schottky diode. Phys. Rev. Lett. 73, 2107–2110 (1994).

    Article  CAS  Google Scholar 

  38. Bunget, I. & Popescu, M. Physics of Solid Dielectrics (Elsevier, 1984).

    Google Scholar 

  39. Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electric resistance of individual dislocations in single-crystal SrTiO3 . Nature Mater. 5, 312–320 (2006).

    Article  CAS  Google Scholar 

  40. Clayton, J. D., Chung, P. W., Grinfeld, M. A. & Nothwang, W. D. Continuum modeling of charged vacancy migration in elastic dielectric solids, with application to perovskite thin films. Mech. Res. Commun. 35, 57–64 (2008).

    Article  Google Scholar 

  41. Mott, N. F. Metal–insulator transition. Rev. Mod. Phys. 40, 677–683 (1968).

    Article  CAS  Google Scholar 

  42. Tsuda, N., Nasu, K., Yanase, A. & Siratori, K. Electronic Conduction in Oxides (Springer, 2000).

    Book  Google Scholar 

  43. Lim, S.-H. et al. Enhanced dielectric properties in single crystal-like BiFeO3 thin films grown by flux-mediated epitaxy. Appl. Phys. Lett. 92, 012918 (2008).

    Article  Google Scholar 

  44. Hauser, A. J. et al. Characterization of electronic structure and defect states of thin epitaxial BiFeO3 films by UV–visible absorption and cathodoluminescence spectroscopies. Appl. Phys. Lett. 92, 222901 (2008).

    Article  Google Scholar 

  45. Takada, Y. & Masaki, M. Polarons in Jahn-Teller crystals: Intrinsic difference between eg and t2g electrons. J. Supercond. Nov. Magn. 20, 629–633 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy under contract No. DE-AC02-05CH11231. C.-H.Y. would like to acknowledge the Korea Research Foundation Grant funded by the Korean Government (MOEHRD). (KRF-2006-214-C00020) J.S. acknowledges support from the Alexander von Humboldt Foundation. Y.H.C. would like to acknowledge the support of the National Science Council, R.O.C., under Contract No NSC 97-3114-M-009-001. A portion of this research was carried out as a user project at Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division, BES, US DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-H. Yang.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, CH., Seidel, J., Kim, S. et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature Mater 8, 485–493 (2009). https://doi.org/10.1038/nmat2432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2432

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing