Abstract
The rapid development of electron tomography, in particular the introduction of novel tomographic imaging modes, has led to the visualization and analysis of three-dimensional structural and chemical information from materials at the nanometre level. In addition, the phase information revealed in electron holograms allows electrostatic and magnetic potentials to be mapped quantitatively with high spatial resolution and, when combined with tomography, in three dimensions. Here we present an overview of the techniques of electron tomography and electron holography and demonstrate their capabilities with the aid of case studies that span materials science and the interface between the physical sciences and the life sciences.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
In situ synthesis of hierarchically-assembled three-dimensional ZnS nanostructures and 3D printed visualization
Scientific Reports Open Access 10 October 2022
-
Three-dimensional electron ptychography of organic–inorganic hybrid nanostructures
Nature Communications Open Access 15 August 2022
-
Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography
Nature Communications Open Access 30 March 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout








References
Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Mater. 8, 263–270 (2009).
Urban, K. W. Is science prepared for atomic-resolution microscopy? Nature Mater. 8, 260–262 (2009).
Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten. Ber. Verh. K. Sachs. Ges. Wiss. Leipzig Math.-Phys. Kl. 69, 262–277 (1917).
Cormack, A. M. Representation of a function by its line integrals with some radiological applications. J. Appl. Phys. 34, 2722–2727 (1963).
Hounsfield, G. N. A method of and apparatus for examination of a body by radiation such as X or gamma radiation. UK patent 1,283,915 (1972).
De Rosier, D. J. & Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134 (1968).
Hoppe, W., Langer, R., Knesch, G. & Poppe, C. Protein-kristallstrukturanalyse mit Elektronenstrahlen. Naturwissenschaften 55, 333–336 (1968).
Hart, R. G. Electron microscopy of unstained biological material: the polytropic montage. Science 159, 1464–1467 (1968).
Unwin, P. N. T. & Henderson, R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425–440 (1975).
Frank, J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Academic, 1996).
Baumeister, W., Grimm, R. & Walz, J. Electron tomography of molecules and cells. Trends Cell Biol. 9, 81–85 (1999).
Chao, W., Hartneck, B. D., Liddle, J. A., Anderson, E. H. & Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15nm. Nature 435, 1210–1213 (2005).
Chapman, H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006).
Magerle, R. Nanotomography. Phys. Rev. Lett. 85, 2749–2752 (2000).
Cerezo, A., Godfrey, T. J. & Smith, G. D. W. Application of a position-sensitive detector to atom probe microanalysis. Rev. Sci. Instrum. 59, 862–866 (1988).
Inkson, B. J., Mulvihill, M. & Möbus, G. 3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography. Scripta Mater. 45, 753–758 (2001).
Schaffer, M., Wagner, J., Schaffer, B., Schmied, M. & Mulders, H. Automated three-dimensional X-ray analysis using a dual-beam FIB. Ultramicroscopy 107, 587–597 (2007).
Konrad, J., Zaefferer, S. & Raabe, D. Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Math. 54, 1369–1380 (2006).
Uchic, M. D., Groeber, M. A., Dimiduk, D. M. & Simmons, J. P. 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scripta Mater. 55, 23–28 (2006).
Spontak, R. J., Williams, M. C. & Agard, D. A. Three-dimensional study of cylindrical morphology in a styrene–butadiene–styrene block copolymer. Polymer 29, 387–395 (1988).
Koster, A. J., Ziese, U., Verkleij, A. J., Janssen, A. H. & de Jong, K. P. Three-dimensional electron microscopy: a novel imaging and characterization technique with nanometer scale resolution for materials science. J. Phys. Chem. B 104, 9368–9370 (2000).
Hawkes, P. W. The Electron Microscope as a Structure Projector in Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope (ed. Frank, J.) 17–39 (Plenum, 1992).
Crowther, R. A., de Rosier, D. J. & Klug, A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. A 319, 317–340 (1970).
Radermacher, M. Weighted Back-Projection Methods in Electron Tomography 2nd edn (ed. Frank, J.) 245–274 (Springer, 2006).
Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972).
Batenburg, K. J. & Sijbers, J. in Proc. IEEE Conf. Image Processing Vol. 4, 133–136 (IEEE, 2007).
Batenburg, K. J. Network Flow Algorithms for Discrete Tomography. Ph.D. thesis, Univ. Leiden; http://visielab.ua.ac.be/staff/batenburg/papers/ba_phdthesis_2006.pdf (2006).
Kawase, N., Kato, M., Nishioka, H. & Jinnai, H. Transmission electron microtomography without the “missing wedge” for quantitative structural analysis. Ultramicroscopy 107, 8–15 (2007).
Arslan, I., Tong, J. R. & Midgley, P. A. Reducing the missing wedge: high-resolution dial axis tomography of inorganic materials. Ultramicroscopy 106, 994–1000 (2006).
Tong, J. R., Arslan, I. & Midgley, P. A. A novel dual-axis iterative algorithm for electron tomography. J. Struct. Biol. 153, 55–63 (2006).
Koguchi, M. et al. Three-dimensional STEM for observing nanostructures. J. Electron Microsc. 50, 235–241 (2001).
Arslan, I., Marquis, E. A., Homer, M., Hekmaty, M. A. & Bartelt, N. C. Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 1579–1585 (2008).
Midgley, P. A. & Weyland, M. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413–431 (2003).
Midgley, P. A., Weyland, M., Thomas, J. M. & Johnson, B. F. G. Z-Contrast tomography: a technique in three-dimensional nanostructural analysis based on Rutherford scattering. Chem. Commun. 10, 907–908 (2001).
Thomas, J. M. et al. The chemical application of high-resolution electron tomography: bright field or dark field? Angew. Chem. Int. Ed. 43, 6745–6747 (2004).
Ward, E. P. W., Yates, T. J. V., Fernández, J.-J., Vaughan, D. E. W. & Midgley, P. A. Three-dimensional nanoparticle distribution and local curvature of heterogeneous catalysts revealed by electron tomography. J. Phys. Chem. C 111, 11501–11505 (2007).
Weyland, M., Yates, T. J. V., Dunin-Borkowski, R. E., Laffont, L. & Midgley, P. A. Nanoscale analysis of three-dimensional structures by electron tomography. Scripta Mater. 55, 29–33 (2006).
Buseck, P. R. et al. Magnetite morphology and life on Mars. Proc. Natl Acad. Sci. USA 98, 13490–13495 (2001).
De Jong, K. P. & Koster, A. J. Three-dimensional electron microscopy of mesoporous materials - recent strides towards spatial imaging at the nanometer scale. ChemPhysChem 3, 776–780 (2002).
Yates, T. J. V. et al. Three-dimensional real-space crystallography of MCM-48 mesoporous silica revealed by scanning transmission electron tomography. Chem. Phys. Lett. 418, 540–543 (2006).
Kaneko, K. et al. TEM characterization of Ge precipitates in an Al–1.6 at% Ge alloy. Ultramicroscopy 108, 210–220 (2008).
Porter, A. E. et al. Direct imaging of single-walled carbon nanotubes in human cells. Nature Nanotechnol. 2, 713–717 (2007).
Midgley, P. A., Weyland, M. & Stegmann, H. in Advanced Tomographic Methods in Materials Research and Engineering (ed. Banhart, J.) 335–373 (Oxford Univ. Press, 2008).
Bals, S., Batenburg, K. J., Verbeeck, J., Sijbers, J. & van Tendeloo, G. Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes. Nano Lett. 7, 3669–3674 (2007).
Kubel, C. et al. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 11, 378–400 (2005).
Ercius, P., Weyland, M., Muller, D. A. & Gignac, L. M. Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl. Phys. Lett. 88, 243116 (2006).
Jeanguillaume, C. & Colliex, C. Spectrum-image: the next step in EELS digital acquisition and processing. Ultramicroscopy 28, 252–257 (1989).
Lavergne, J. L., Martin, J. M. & Belin, M. interactive electron-energy-loss elemental mapping by the imaging-spectrum method. Microsc. Microanal. Microstruct. 3, 517–528 (1992).
Thomas, P. J. & Midgley, P. A. Image-spectroscopy - I. The advantages of increased spectral information for compositional EFTEM analysis. Ultramicroscopy 88, 179–186 (2001).
Mobus, G. & Inkson, B. J. Three-dimensional reconstruction of buried nanoparticles by element-sensitive tomography based on inelastically scattered electrons. Appl. Phys. Lett. 79, 1369–1371 (2001).
Weyland, M. & Midgley, P. A. Extending energy-filtered transmission electron microscopy (EFTEM) into three dimensions using electron tomography. Microsc. Microanal. 9, 542–555 (2003).
Yurtsever, A., Weyland, M. & Muller, D. A. Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography. Appl. Phys. Lett. 89, 151920 (2006).
Gass, M. H., Koziol, K. K. K., Windle, A. H. & Midgley, P. A. 4-dimensional spectral-tomography of carbonaceous nano-composites. Nano Lett. 6, 376–379 (2006).
Mobus, G., Doole, R. C. & Inkson, B. J. Spectroscopic electron tomography. Ultramicroscopy 96, 433–451 (2003).
Yaguchi, T. et al. Elemental mapping using a dedicated FIB/STEM system. Microsc. Microanal. 10 (suppl. 2), 1030–1031 (2004).
Barnard, J. S., Sharp, J., Tong, J. R. & Midgley, P. A. High-resolution three-dimensional imaging of dislocations. Science 303, 319 (2006).
Hata, S. et al. Electron tomography imaging and analysis of γ′ and γ domains in Ni-based superalloys. Adv. Mater. 20, 1905–1909 (2008).
Sharp, J. H., Barnard, J. S., Kaneko, K., Higashida, K. & Midgley, P. A. Dislocation tomography made easy: a reconstruction from ADF STEM images obtained using automated image shift correction. J. Phys. Conf. Ser. 126, 012013 (2008).
Sadan, M. B. et al. Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures. Nano Lett. 8, 891–896 (2008).
Jinschek, J. R. et al. 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: prospects of atomic resolution electron tomography. Ultramicroscopy 108, 589–604 (2008).
Rodenburg, J. M., Hurst, A. C. & Cullis, A. G. Transmission microscopy without lenses for objects of unlimited size. Ultramicroscopy 107, 227–231 (2007).
Midgley, P. A. An introduction to electron holography. Micron 32, 167–184 (2001).
Gabor, D. Microscopy by reconstructed wavefronts. Proc. R. Soc. Lond. A 197, 454–487 (1949).
Jönsson, C. Elektroneninterferenzen an mehereren künstlich hergestellten Feinspalten. Z. Phys. A 161, 454–474 (1961).
Merli, P. G., Missiroli, G. F. & Pozzi, G. On the statistical aspect of electron interference phenomena. Am. J. Phys. 44, 306–307 (1976).
Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T. & Ezawa, H. Demonstration of single-electron build-up of an interference pattern. Am. J. Phys. 57, 117–120 (1989).
Junginger, F. et al. Spin torque and heating effects in current-induced domain wall motion probed by high-resolution transmission electron microscopy. Appl. Phys. Lett. 90, 132506 (2007).
Bromwich, T. J. et al. Remanent magnetic states and interactions in nano-pillars. Nanotechnology 17, 4367–4373 (2006).
Völkl, E., Allard, L. F. & Joy, D. C. (eds) Introduction to Electron Holography (Plenum, 1998).
Möllenstedt, G. & Düker, H. Fresnelscher Interferenzversuch mit einem Biprisma für Elektronenwellen. Naturwissenschaften 42, 41 (1955).
Orchowski, A., Rau, W. D. & Lichte, H. Electron holography surmounts resolution limit of electron microscopy. Phys. Rev. Lett. 74, 399–402 (1995).
Tonomura, A. Electron Holography (Springer, 1999).
Osakabe, N. et al. Observation of recorded magnetization pattern by electron holography. Appl. Phys. Lett. 42, 746–748 (1983).
Hasegawa, S. et al. Magnetic-flux quanta in superconducting thin films observed by electron holography and digital phase analysis. Phys. Rev. B 43, 7631–7650 (1991).
Bonevich, J. E. et al. Electron holography observation of vortex lattices in a superconductor. Phys. Rev. Lett. 70, 2952–2955 (1993).
Tonomura, A. et al. Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792–795 (1986).
Dunin-Borkowski, R. E. et al. Off-axis electron holography of magnetic nanowires and chains, rings and planar arrays of magnetic nanoparticles. Microsc. Res. Tech. 64, 390–402 (2004).
Tripp, S. L., Dunin-Borkowski, R. E. & Wei, A. Flux closure in self-assembled cobalt nanoparticle rings. Angew. Chem. 42, 5591–5593 (2003).
Harrison, R. J., Dunin-Borkowski, R. E. & Putnis, A. Direct imaging of nanoscale magnetic interactions in minerals. Proc. Natl Acad. Sci. USA 99, 16556–16561 (2002).
Feinberg, J. M. et al. Effects of internal mineral structures on the magnetic remanence of silicate-hosted titanomagnetite inclusions: an electron holography study. J. Geophys. Res. 111, B12S15 (2006).
Dunin-Borkowski, R. E. et al. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282, 1868–1870 (1998).
Kasama, T. et al. Magnetic properties, microstructure, composition and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. Am. Mineral. 91, 1216–1229 (2006).
Loudon, J. C., Mathur, N. D. & Midgley, P. A. Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3 . Nature 420, 797–800 (2002).
Murakami, Y., Yoo, J. H., Shindo, D., Atou, T. & Kikuchi, M. Magnetization distribution in the mixed-phase state of hole-doped manganites. Nature 423, 965–968 (2003).
Kasama, T. et al. Off-axis electron holography of pseudo-spin-valve thin film magnetic elements. J. Appl. Phys. 98, 013903 (2005).
Hu, H., Wang, H., McCartney, M. R. & Smith, D. J. Switching mechanisms and remanent states for nanoscale slotted Co circular elements studied by electron holography. Phys. Rev. B 73, 153401 (2006).
Merli, P. G., Missiroli, G. F. & Pozzi, G. P–n junction observations by interference electron microscopy. J. Microscopie 21, 11–20 (1974).
Frabboni, S., Matteucci, G. & Pozzi, G. Observation of electrostatic fields by electron holography: the case of reversed biased p–n junctions. Ultramicroscopy 23, 29–38 (1987).
Matteucci, G., Missiroli, G. F., Muccini, M. & Pozzi, G. Electron holography in the study of the electrostatic fields: the case of charged microtips. Ultramicroscopy 45, 77–83 (1992).
Cumings, J., Zettl, A., McCartney, M. R. & Spence, J. C. H. Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett. 88, 056804 (2002).
Matsumoto, T. et al. Ferroelectric 90° domain structure in a thin film of BaTiO3 fine ceramics observed by 300 kV electron holography. Appl. Phys. Lett. 92, 072902 (2008).
Rau, W. D., Schwander, P., Baumann, F. H., Höppner, W. & Ourmazd, A. Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys. Rev. Lett. 82, 2614–2617 (1999).
Gribelyuk, M. A. et al. Mapping of electrostatic potential in deep submicron CMOS devices by electron holography. Phys. Rev. Lett. 89, 025502 (2002).
Twitchett, A. C., Dunin-Borkowski, R. E. & Midgley, P. A. Quantitative electron holography of biased semiconductor devices. Phys. Rev. Lett. 88, 238302 (2002).
Twitchett, A. C., Dunin-Borkowski, R. E., Hallifax, R. J., Broom, R. F. & Midgley, P. A. Off-axis electron holography of unbiased and reverse-biased focused ion beam milled Si p-n junctions. Microsc. Microanal. 11, 66–78 (2005).
Cooper, D., Twitchett-Harrison, A. C., Midgley, P. A. & Dunin-Borkowski, R. E. The influence of electron irradiation on electron holography of focused ion beam milled GaAs p-n junctions. J. Appl. Phys. 101, 094508 (2007).
Cooper, D. et al. Improvement in electron holographic phase images of focused-ion-beam-milled GaAs and Si p-n junctions by in situ annealing. Appl. Phys. Lett. 88, 063510 (2006).
Beleggia, M., Fazzini, P. F., Merli, P. G. & Pozzi, G. Influence of charged oxide layers on TEM imaging of reverse-biased p-n junctions. Phys. Rev. B 67, 045328 (2003).
Houben, L., Luysberg, M. & Brammer, T. Illumination effects in holographic imaging of the electrostatic potential in semiconductors in transmission electron microscopy. Phys. Rev. B 70, 165313 (2004).
Hÿtch, M. J., Houdellier, F., Hüe, F. & Snoeck, E. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086–1089 (2008).
Twitchett-Harrison, A. C., Yates, T. J. V., Newcomb, S. B., Dunin-Borkowski, R. E. & Midgley, P. A. High-resolution three-dimensional mapping of semiconductor dopant potentials. Nano Lett. 7, 2020–2023 (2007).
Kasama, T., Antypas, Y., Chong, R. K. K. & Dunin-Borkowski, R. E. in Electron Microscopy of Molecular and Atom-Scale Mechanical Behavior, Chemistry and Structure (eds Martin, D. C., Muller, D. A., Midgley, P. A. & Stach, E. A.) P5.01 (Mater. Res. Soc. Proc. 839, 2005).
Phatak, C., Beleggia, M. & de Graef, M. Vector field electron tomography of magnetic materials: theoretical development. Ultramicroscopy 108, 503–513 (2008).
Lai, G. M. et al. 3-dimensional reconstruction of magnetic vector-fields using electron-holographic interferometry. J. Appl. Phys. 75, 4593–4598 (1994).
Lade, S. J., Paganin, D. & Morgan, M. J. Electron tomography of electromagnetic fields, potentials and sources. Opt. Commun. 253, 392–400 (2005).
Acknowledgements
We are grateful to many colleagues for contributions to the work presented here, including M. Weyland, I. Arslan, T. J. V. Yates, M. H. Gass, E. P. W. Ward, L. Laffont, K. Kaneko, J. S. Barnard, J. Sharp, J. R. Tong, J.-C. Hernandez, A. Hungria, J. M. Thomas, T. Kasama, A. C. Twitchett-Harrison, R. J. Harrison, M. Pósfai and M. R. McCartney. Financial support from the European Union Framework 6 programme under a contract for an Integrated Infrastructure Initiative (Reference 026019 ESTEEM) is acknowledged. We are also grateful to the EPSRC, the Royal Society and RIKEN for financial support.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Midgley, P., Dunin-Borkowski, R. Electron tomography and holography in materials science. Nature Mater 8, 271–280 (2009). https://doi.org/10.1038/nmat2406
Issue Date:
DOI: https://doi.org/10.1038/nmat2406
This article is cited by
-
Machine learning in scanning transmission electron microscopy
Nature Reviews Methods Primers (2022)
-
Three-dimensional electron ptychography of organic–inorganic hybrid nanostructures
Nature Communications (2022)
-
In situ synthesis of hierarchically-assembled three-dimensional ZnS nanostructures and 3D printed visualization
Scientific Reports (2022)
-
Theoretical study on spectral and optical properties of essential amino acids: a comparative study
Optical and Quantum Electronics (2022)
-
Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading
Nature Nanotechnology (2021)