Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coexistence of static magnetism and superconductivity in SmFeAsO1−xFx as revealed by muon spin rotation

Abstract

The recent observation of superconductivity with critical temperatures (Tc) up to 55 K in the pnictide RFeAsO1−xFx, where R is a lanthanide, marks the first discovery of a non-copper-oxide-based layered high-Tc superconductor1,2,3. It has raised the suspicion that these new materials share a similar pairing mechanism to the cuprate superconductors, as both families exhibit superconductivity following charge doping of a magnetic parent material. In this context, it is important to follow the evolution of the microscopic magnetic properties of the pnictides with doping and hence to determine whether magnetic correlations coexist with superconductivity. Here, we present a muon spin rotation study on SmFeAsO1−xFx, with x=0–0.30 that shows that, as in the cuprates, static magnetism persists well into the superconducting regime. This analogy is quite surprising as the parent compounds of the two families have rather different magnetic ground states: itinerant spin density wave for the pnictides contrasted with the Mott–Hubbard insulator in the cuprates. Our findings therefore suggest that the proximity to magnetic order and associated soft magnetic fluctuations, rather than strong electronic correlations in the vicinity of a Mott–Hubbard transition, may be the key ingredients of high-Tc superconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature and doping dependencies of the ZF-μSR spectra of SmFeAsO1−xFx.
Figure 2: Evolution of the magnetic signal of the μSR measurements on SmFeAsO1−xFx as a function of doping and temperature.
Figure 3: Evidence for bulk superconductivity due to a gap-like suppression of the infrared optical conductivity, and magnetization and resistivity data supporting the presence of superconductivity.
Figure 4: Phase diagram of the magnetic and superconducting properties of SmFeAsO1−xFx.

Similar content being viewed by others

References

  1. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with Tc=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  CAS  Google Scholar 

  2. Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1−xFx . Nature 453, 761–762 (2008).

    Article  CAS  Google Scholar 

  3. Ren, Z. A. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1−xFx] FeAs. Chin. Phys. Lett. 25, 2215–2216 (2008).

    Article  CAS  Google Scholar 

  4. Lebegue, S. Electronic structure and properties of the Fermi surface of the superconductor LaOFeP. Phys. Rev. B 75, 035110 (2007).

    Article  Google Scholar 

  5. Singh, D. J. & Du, M. H. Density functional study of LaFeAsO1−xFx: A low carrier density superconductor near itinerant magnetism. Phys. Rev. Lett. 100, 237003 (2008).

    Article  CAS  Google Scholar 

  6. Haule, K., Shim, J. H. & Kotliar, G. Correlated electronic structure of LaO1−xFxFeAs. Phys. Rev. Lett. 100, 226402 (2008).

    Article  CAS  Google Scholar 

  7. Xu, G. et al. Doping-dependent phase diagram of LaOMAs (M=V–Cu) and electron-type superconductivity near ferromagnetic instability. Europhys. Lett. 82, 67002 (2008).

    Article  Google Scholar 

  8. de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).

    Article  CAS  Google Scholar 

  9. McGuire, M. A. et al. Phase transitions in LaFeAsO: Structural, magnetic, elastic, and transport properties, heat capacity and Mössbauer spectra. Phys. Rev. B 78, 094517 (2008).

    Article  Google Scholar 

  10. Klauss, H.-H. et al. Commensurate spin density wave in LaFeAsO: A local probe study. Phys. Rev. Lett. 101, 077005 (2008).

    Article  Google Scholar 

  11. Liu, R. H. et al. Anomalous transport properties and phase diagram of the FeAs-based SmFeAsO1−xFx superconductors. Phys. Rev. Lett. 101, 087001 (2008).

    Article  CAS  Google Scholar 

  12. Wen, H., Mu, G., Fang, L., Yang, H. & Zhu, X. Superconductivity at 25 K in hole-doped (La1−xSrx)OFeAs. Europhys. Lett. 82, 17009 (2008).

    Article  Google Scholar 

  13. Luke, G. M. et al. Magnetic order and electronic phase diagrams of electron-doped copper oxide materials. Phys. Rev. B 42, 7981–7988 (1990).

    Article  CAS  Google Scholar 

  14. Niedermayer, Ch. Common phase diagram for antiferromagnetism in La2−xSrxCuO4 and Y1−xCaxBa2Cu3O6 as seen by muon spin rotation. Phys. Rev. Lett. 80, 3843–3846 (1998).

    Article  CAS  Google Scholar 

  15. Sanna, S., Allodi, G., Concas, G., Hillier, A. D. & De Renzi, R. Nanoscopic coexistence of magnetism and superconductivity in YBa2Cu3O6+x detected by muon spin rotation. Phys. Rev. Lett. 93, 207001 (2004).

    Article  CAS  Google Scholar 

  16. Julien, M. H. Magnetic order and superconductivity in La2−xSrxCuO4: A review. Physica B 329, 693–696 (2003).

    Article  Google Scholar 

  17. Savici, A. T. et al. Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 La2CuO4.11 and La1.88Sr0.12CuO4 . Phys. Rev. B 66, 014524 (2002).

    Article  Google Scholar 

  18. Ding, L. et al. Specific heat of the iron-based high-Tc superconductor SmO1−xFxFeAs. Phys. Rev. B 77, 180510(R) (2008).

    Article  Google Scholar 

  19. Zhu, X. et al. Upper critical field, Hall effect and magnetoresistance in the iron-based layered superconductor LaFeAsO0.9F0.1−δ . Supercond. Sci. Tech. 21, 105001 (2008).

    Article  Google Scholar 

  20. Hunte, F. Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields. Nature 453, 903–905 (2008).

    Article  CAS  Google Scholar 

  21. Dubroka, A. Superconducting energy gap and c-axis plasma frequency of (Nd,Sm)FeAsO0.82F0.18 superconductors from infrared ellipsometry. Phys. Rev. Lett. 101, 097011 (2008).

    Article  CAS  Google Scholar 

  22. Drew, A. J. et al. Coexistence of magnetic fluctuations and superconductivity in the pnictide high temperature superconductor SmFeAsO1−xFx measured by muon spin rotation. Phys. Rev. Lett. 101, 097010 (2008).

    Article  CAS  Google Scholar 

  23. Luetkens, H. Field and temperature dependence of the superfluid density in LaFeAsO1−xFx superconductors: A muon spin relaxation study. Phys. Rev. Lett. 101, 097009 (2008).

    Article  CAS  Google Scholar 

  24. Margadonna, S. et al. Crystal structure and phase transitions across the metal-superconductor boundary in the SmFeAsO1−xFx (0≤x≤0.20) family. Phys. Rev. B 79, 014503 (2009).

    Article  Google Scholar 

  25. Luetkens, H. et al. The electronic phase diagram of the LaO1−xFxFeAs superconductor. Nature Mater. 10.1038/nmat2397 (2009).

  26. Zhao, J. et al. Structural and magnetic phase diagram of CeFeAsO1−xFx and its relation to high-temperature superconductivity. Nature Mater. 7, 953–959 (2008).

    Article  CAS  Google Scholar 

  27. Carlo, J. P. et al. MuSR studies of RE(O,F)FeAs (RE=La, Nd, Ce) and LaOFeP systems: Possible incommensurate/stripe magnetism and superfluid density. Preprint at <http://arxiv.org/abs/0805.2186> (2008).

  28. Kato, M., Suzumura, Y., Okabe, Y. & Machida, K. Transition temperature enhancement due to aniferromagnetic fluctuations in high-Tc oxide superconductors. J. Phys. Soc. Jpn 57, 726–729 (1988).

    Article  CAS  Google Scholar 

  29. Fong, H. F. et al. Spin susceptibility in underdoped YBa2Cu3O6+x . Phys. Rev. B 61, 14773–14786 (2000).

    Article  CAS  Google Scholar 

  30. Hess, C. et al. The intrinsic electronic phase diagram of iron-pnictide superconductors. Preprint at <http://arxiv.org/abs/0811.1601> (2008).

  31. Schenck, A. Principles and Applications in Solid State Physics (Adam Hilger, 1985).

    Google Scholar 

  32. Weidinger, A. et al. Observation of magnetic ordering in superconducting La2−xSrxCuO4 by muon spin rotation. Phys. Rev. Lett. 62, 102–105 (1989).

    Article  CAS  Google Scholar 

  33. Kiefl, R. F. et al. Muon-spin-rotation study of magnetism in La1.85Sr0.15CuO4 and YBa2Cu3Ox below 90 mK. Phys. Rev. Lett. 63, 2136–2139 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Schweizer Nationalfonds (SNF) by grant 200020-119784 and the NCCR program MANEP, the Deutsche Forschungsgemeinschaft (DFG) by grant BE2684/1-3 in FOR538 and the UK EPSRC. We acknowledge helpful discussions with D. Baeriswyl, A. T. Boothroyd and M. Siegrist.

Author information

Authors and Affiliations

Authors

Contributions

A.J.D, Ch.N., F.L.P., S.J.B., T.L., I.W., C. Baines and C. Bernhard carried out the muon experiments. A.J.D, Ch.N., F.L.P., S.J.B. and C.B(2) analysed and interpreted the results. A.J.D., P.J.B., S.J.B., V.K.M, A.D., M.R., K.W.K. and C.B.(2) were responsible for the characterization measurements. R.H.L., G.W. and X.H.C. prepared the samples.

Corresponding authors

Correspondence to A. J. Drew or C. Bernhard.

Supplementary information

Supplementary Information

Supplementary Information (PDF 328 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drew, A., Niedermayer, C., Baker, P. et al. Coexistence of static magnetism and superconductivity in SmFeAsO1−xFx as revealed by muon spin rotation. Nature Mater 8, 310–314 (2009). https://doi.org/10.1038/nmat2396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing