Letter | Published:

Coexistence of static magnetism and superconductivity in SmFeAsO1−xFx as revealed by muon spin rotation

Nature Materials volume 8, pages 310314 (2009) | Download Citation

Abstract

The recent observation of superconductivity with critical temperatures (Tc) up to 55 K in the pnictide RFeAsO1−xFx, where R is a lanthanide, marks the first discovery of a non-copper-oxide-based layered high-Tc superconductor1,2,3. It has raised the suspicion that these new materials share a similar pairing mechanism to the cuprate superconductors, as both families exhibit superconductivity following charge doping of a magnetic parent material. In this context, it is important to follow the evolution of the microscopic magnetic properties of the pnictides with doping and hence to determine whether magnetic correlations coexist with superconductivity. Here, we present a muon spin rotation study on SmFeAsO1−xFx, with x=0–0.30 that shows that, as in the cuprates, static magnetism persists well into the superconducting regime. This analogy is quite surprising as the parent compounds of the two families have rather different magnetic ground states: itinerant spin density wave for the pnictides contrasted with the Mott–Hubbard insulator in the cuprates. Our findings therefore suggest that the proximity to magnetic order and associated soft magnetic fluctuations, rather than strong electronic correlations in the vicinity of a Mott–Hubbard transition, may be the key ingredients of high-Tc superconductors.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with Tc=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

  2. 2.

    et al. Superconductivity at 43 K in SmFeAsO1−xFx. Nature 453, 761–762 (2008).

  3. 3.

    et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1−xFx] FeAs. Chin. Phys. Lett. 25, 2215–2216 (2008).

  4. 4.

    Electronic structure and properties of the Fermi surface of the superconductor LaOFeP. Phys. Rev. B 75, 035110 (2007).

  5. 5.

    & Density functional study of LaFeAsO1−xFx: A low carrier density superconductor near itinerant magnetism. Phys. Rev. Lett. 100, 237003 (2008).

  6. 6.

    , & Correlated electronic structure of LaO1−xFxFeAs. Phys. Rev. Lett. 100, 226402 (2008).

  7. 7.

    et al. Doping-dependent phase diagram of LaOMAs (M=V–Cu) and electron-type superconductivity near ferromagnetic instability. Europhys. Lett. 82, 67002 (2008).

  8. 8.

    et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).

  9. 9.

    et al. Phase transitions in LaFeAsO: Structural, magnetic, elastic, and transport properties, heat capacity and Mössbauer spectra. Phys. Rev. B 78, 094517 (2008).

  10. 10.

    et al. Commensurate spin density wave in LaFeAsO: A local probe study. Phys. Rev. Lett. 101, 077005 (2008).

  11. 11.

    et al. Anomalous transport properties and phase diagram of the FeAs-based SmFeAsO1−xFx superconductors. Phys. Rev. Lett. 101, 087001 (2008).

  12. 12.

    , , , & Superconductivity at 25 K in hole-doped (La1−xSrx)OFeAs. Europhys. Lett. 82, 17009 (2008).

  13. 13.

    et al. Magnetic order and electronic phase diagrams of electron-doped copper oxide materials. Phys. Rev. B 42, 7981–7988 (1990).

  14. 14.

    Common phase diagram for antiferromagnetism in La2−xSrxCuO4 and Y1−xCaxBa2Cu3O6 as seen by muon spin rotation. Phys. Rev. Lett. 80, 3843–3846 (1998).

  15. 15.

    , , , & Nanoscopic coexistence of magnetism and superconductivity in YBa2Cu3O6+x detected by muon spin rotation. Phys. Rev. Lett. 93, 207001 (2004).

  16. 16.

    Magnetic order and superconductivity in La2−xSrxCuO4: A review. Physica B 329, 693–696 (2003).

  17. 17.

    et al. Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 La2CuO4.11 and La1.88Sr0.12CuO4. Phys. Rev. B 66, 014524 (2002).

  18. 18.

    et al. Specific heat of the iron-based high-Tc superconductor SmO1−xFxFeAs. Phys. Rev. B 77, 180510(R) (2008).

  19. 19.

    et al. Upper critical field, Hall effect and magnetoresistance in the iron-based layered superconductor LaFeAsO0.9F0.1−δ. Supercond. Sci. Tech. 21, 105001 (2008).

  20. 20.

    Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields. Nature 453, 903–905 (2008).

  21. 21.

    Superconducting energy gap and c-axis plasma frequency of (Nd,Sm)FeAsO0.82F0.18 superconductors from infrared ellipsometry. Phys. Rev. Lett. 101, 097011 (2008).

  22. 22.

    et al. Coexistence of magnetic fluctuations and superconductivity in the pnictide high temperature superconductor SmFeAsO1−xFx measured by muon spin rotation. Phys. Rev. Lett. 101, 097010 (2008).

  23. 23.

    Field and temperature dependence of the superfluid density in LaFeAsO1−xFx superconductors: A muon spin relaxation study. Phys. Rev. Lett. 101, 097009 (2008).

  24. 24.

    et al. Crystal structure and phase transitions across the metal-superconductor boundary in the SmFeAsO1−xFx (0≤x≤0.20) family. Phys. Rev. B 79, 014503 (2009).

  25. 25.

    et al. The electronic phase diagram of the LaO1−xFxFeAs superconductor. Nature Mater. 10.1038/nmat2397 (2009).

  26. 26.

    et al. Structural and magnetic phase diagram of CeFeAsO1−xFx and its relation to high-temperature superconductivity. Nature Mater. 7, 953–959 (2008).

  27. 27.

    et al. MuSR studies of RE(O,F)FeAs (RE=La, Nd, Ce) and LaOFeP systems: Possible incommensurate/stripe magnetism and superfluid density. Preprint at <> (2008).

  28. 28.

    , , & Transition temperature enhancement due to aniferromagnetic fluctuations in high-Tc oxide superconductors. J. Phys. Soc. Jpn 57, 726–729 (1988).

  29. 29.

    et al. Spin susceptibility in underdoped YBa2Cu3O6+x. Phys. Rev. B 61, 14773–14786 (2000).

  30. 30.

    et al. The intrinsic electronic phase diagram of iron-pnictide superconductors. Preprint at <> (2008).

  31. 31.

    Principles and Applications in Solid State Physics (Adam Hilger, 1985).

  32. 32.

    et al. Observation of magnetic ordering in superconducting La2−xSrxCuO4 by muon spin rotation. Phys. Rev. Lett. 62, 102–105 (1989).

  33. 33.

    et al. Muon-spin-rotation study of magnetism in La1.85Sr0.15CuO4 and YBa2Cu3Ox below 90 mK. Phys. Rev. Lett. 63, 2136–2139 (1989).

Download references

Acknowledgements

This work is supported by the Schweizer Nationalfonds (SNF) by grant 200020-119784 and the NCCR program MANEP, the Deutsche Forschungsgemeinschaft (DFG) by grant BE2684/1-3 in FOR538 and the UK EPSRC. We acknowledge helpful discussions with D. Baeriswyl, A. T. Boothroyd and M. Siegrist.

Author information

Affiliations

  1. University of Fribourg, Department of Physics and Fribourg Centre for Nanomaterials, Chemin du Musée 3, CH-1700 Fribourg, Switzerland

    • A. J. Drew
    • , V. K. Malik
    • , A. Dubroka
    • , M. Rössle
    • , K. W. Kim
    •  & C. Bernhard
  2. Queen Mary University of London, Department of Physics, Mile End Road, London E1 4NS, UK

    • A. J. Drew
  3. Laboratory for Neutron Scattering, Paul Scherrer Institut & ETH Zürich, CH-5232 Villigen, Switzerland

    • Ch. Niedermayer
  4. Oxford University, Department of Physics, Clarendon Laboratory, Oxford OX1 3PU, UK

    • P. J. Baker
    • , S. J. Blundell
    •  & T. Lancaster
  5. ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, UK

    • F. L. Pratt
  6. Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

    • R. H. Liu
    • , G. Wu
    •  & X. H. Chen
  7. RIKEN-RAL, Nishina Centre, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan

    • I. Watanabe
  8. Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen, Switzerland

    • C. Baines

Authors

  1. Search for A. J. Drew in:

  2. Search for Ch. Niedermayer in:

  3. Search for P. J. Baker in:

  4. Search for F. L. Pratt in:

  5. Search for S. J. Blundell in:

  6. Search for T. Lancaster in:

  7. Search for R. H. Liu in:

  8. Search for G. Wu in:

  9. Search for X. H. Chen in:

  10. Search for I. Watanabe in:

  11. Search for V. K. Malik in:

  12. Search for A. Dubroka in:

  13. Search for M. Rössle in:

  14. Search for K. W. Kim in:

  15. Search for C. Baines in:

  16. Search for C. Bernhard in:

Contributions

A.J.D, Ch.N., F.L.P., S.J.B., T.L., I.W., C. Baines and C. Bernhard carried out the muon experiments. A.J.D, Ch.N., F.L.P., S.J.B. and C.B(2) analysed and interpreted the results. A.J.D., P.J.B., S.J.B., V.K.M, A.D., M.R., K.W.K. and C.B.(2) were responsible for the characterization measurements. R.H.L., G.W. and X.H.C. prepared the samples.

Corresponding authors

Correspondence to A. J. Drew or C. Bernhard.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat2396

Further reading