Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal

Abstract

‘Smaller is stronger’ does not hold true only for nanocrystalline materials1 but also for single crystals2,3,4,5. It is argued that this effect is caused by geometrical constraints on the nucleation and motion of dislocations in submicrometre-sized crystals6,7. Here, we report the first in situ transmission electron microscopy tensile tests of a submicrometre aluminium single crystal that are capable of providing direct insight into source-controlled dislocation plasticity in a submicrometre crystal. Single-ended sources emit dislocations that escape the crystal before being able to multiply. As dislocation nucleation and loss rates are counterbalanced at about 0.2 events per second, the dislocation density remains statistically constant throughout the deformation at strain rates of about 10−4 s−1. However, a sudden increase in strain rate to 10−3 s−1 causes a noticeable surge in dislocation density as the nucleation rate outweighs the loss rate. This observation indicates that the deformation of submicrometre crystals is strain-rate sensitive.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Submicrometre tensile testing sample of single crystal aluminium.
Figure 2: Dislocation loops formed during tensile loading.
Figure 3: Dislocation emission by the operation of single-ended spiral sources.
Figure 4: Typical escape process of a long dislocation with accompanying single cross-slip.
Figure 5: Dislocation density measured as a function of the axial strain.

References

  1. 1

    Kumar, K. S., Van Swygenhoven, H. & Suresh, S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743–5774 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Greer, J. R., Oliver, W. C. & Nix, W. D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821–1830 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Volkert, C. A. & Lilleodden, E. T. Size effects in the deformation of sub-micron Au columns. Phil. Mag. 86, 5567–5579 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Kiener, D., Grosinger, W., Dehm, G. & Pippan, R. A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580–592 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Nix, W. D., Greer, J. R., Feng, G. & Lilleodden, E. T. Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films 515, 3152–3157 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Parthasarathy, T. A., Rao, S. I., Dimiduk, D. M., Uchic, M. D. & Trinkle, D. R. Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56, 313–316 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Csikor, F. C., Motz, C., Weygand, D., Zaiser, M. & Zapperi, S. Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318, 251–254 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Benzerga, A. A. & Shaver, N. F. Scale dependence of mechanical properties of single crystals under uniform deformation. Scr. Mater. 54, 1937–1941 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Tang, H., Schwarz, K. W. & Espinosa, H. D. Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression. Acta Mater. 55, 1607–1616 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Rao, S. I. et al. Athermal mechanism of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. Acta Mater. 56, 3245–3259 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Rao, S. I. et al. Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Phil. Mag. 87, 4777–4794 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Norfleet, D. M., Dimiduk, D. M., Polasik, S. J., Uchic, M. D. & Mills, M. J. Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 56, 2988–3001 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Ng, K. S. & Ngan, A. H. W. Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712–1720 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Kiener, D., Motz, C., Rester, M., Jenko, M. & Dehm, G. FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng. A 459, 262–272 (2007).

    Article  Google Scholar 

  16. 16

    Shan, Z. W., Mishra, R. K., Syed Asif, S. A., Warren, O. L. & Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nature Mater. 7, 115–119 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Maaß, R., Petegem, S. V., Zimmermann, J., Borca, C. N. & Swygenhoven, H. V. On the initial microstructure of metallic micropillars. Scr. Mater. 59, 471–474 (2008).

    Article  Google Scholar 

  18. 18

    Kiener, D., Motz, C. & Dehm, G. Dislocation-induced crystal rotations in micro-compressed single crystal copper columns. J. Mater. Sci. 43, 2503–2506 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Maaß, R. et al. Crystal rotation in Cu single crystal micropillars: In situ Laue and electron backscatter diffraction. Appl. Phys. Lett. 92, 071905 (2008).

    Article  Google Scholar 

  20. 20

    Dehm, G., Legros, M. & Heiland, B. In-situ TEM straining experiments of Al films on polyimide using a novel FIB design for specimen preparation. J. Mater. Sci. 41, 4484–4489 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Gutkin, M. Yu. & Ovid’ko, I. A. Special mechanism for dislocation nucleation in nanomaterials. Appl. Phys. Lett. 88, 211901 (2006).

    Article  Google Scholar 

  22. 22

    Li, J., Van Vliet, K. J., Zhu, T., Yip, S. & Suresh, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Minor, A. M. Jr, Morris, J. W. & Stach, E. A. Quantitative in situ nanoindentation in an electron microscope. Appl. Phys. Lett. 79, 1625–1627 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Gilman, J. J. Micromechanics of Flow in Solids (McGraw-Hill, 1969).

    Google Scholar 

  25. 25

    Legros, M. et al. Microstructural evolution in passivated Al films on Si substrates during thermal cycling. Acta Mater. 50, 3435–3452 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Cao, A. & Ma, E. Sample shape and temperature strongly influence the yield strength of metallic nanopillars. Acta Mater. 56, 4816–4828 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Zhu, T., Li, J., Samanta, A., Leach, A. & Gall, K. Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by the Austrian Academy of Sciences. S.H.O. gratefully acknowledges financial support by the Korea Basic Science Institute grant (N28078). Recurrent financial support from the Centre National de la Recherche Scientifique was used to complete the TEM experiments in the framework of the ESTEEM European program.

Author information

Affiliations

Authors

Contributions

S.H.O. and M.L. carried out the TEM experiments. S.H.O. and D.K. prepared the tensile testing sample using FIB. S.H.O. analysed the data, interpreted and discussed the results and wrote the paper. M.L., D.K. and D.L. revised the paper. M.L. double-checked the data analysis and refined the strain-rate calculation. G.D. conceived and designed the experiments.

Corresponding authors

Correspondence to Sang Ho Oh or Daniel Kiener.

Supplementary information

Supplementary Information (PDF 939 kb)

Supplementary Information

Supplementary Movie 1 (MOV 297 kb)

Supplementary Information

Supplementary Movie 2 (MOV 4337 kb)

Supplementary Information

Supplementary Movie 3 (MOV 5671 kb)

Supplementary Information

Supplementary Movie 4 (MOV 1544 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oh, S., Legros, M., Kiener, D. et al. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nature Mater 8, 95–100 (2009). https://doi.org/10.1038/nmat2370

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing