Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation

Abstract

Electronic devices that use the spin degree of freedom hold unique prospects for future technology. The performance of these ‘spintronic’ devices relies heavily on the efficient transfer of spin polarization across different layers and interfaces. This complex transfer process depends on individual material properties and also, most importantly, on the structural and electronic properties of the interfaces between the different materials and defects that are common to real devices. Knowledge of these factors is especially important for the relatively new field of organic spintronics, where there is a severe lack of suitable experimental techniques that can yield depth-resolved information about the spin polarization of charge carriers within buried layers of real devices. Here, we present a new depth-resolved technique for measuring the spin polarization of current-injected electrons in an organic spin valve and find the temperature dependence of the measured spin diffusion length is correlated with the device magnetoresistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the experimental set-up.
Figure 2: Influence of spin injection on the μSR spectra.
Figure 3: Correlation between the direction of spin polarization of the injected carriers and the change in the μSR spectra.
Figure 4: Correlation between spin diffusion length and magnetoresistance.

Similar content being viewed by others

References

  1. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  2. Xiong, Z. H., Wu, D., Vardeny, Z. V. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    Article  CAS  Google Scholar 

  3. Pramanik, S. et al. Observation of extremely long spin relaxation times in an organic nanowire spin valve. Nature Nano. 2, 216–219 (2007).

    Article  CAS  Google Scholar 

  4. Sanvito, S. & Rocha, A. R. Molecular-spintronics: The art of driving spin through molecules. J. Comput. Theor. Nanosci. 3, 624–642 (2006).

    Article  CAS  Google Scholar 

  5. Khaetskii, A. & Nazarov, Y. V. Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots. Phys. Rev. B 63, 184433 (2001).

    Article  Google Scholar 

  6. Cameron, A. R., Riblet, P. & Miller, P. A. Spin gratings and the measurement of electron drift mobility in multiple quantum well semiconductors. Phys. Rev. Lett. 76, 4793–4796 (1996).

    Article  CAS  Google Scholar 

  7. Kikkawa, J. M. & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).

    Article  CAS  Google Scholar 

  8. LaBella, V. et al. Spatially resolved spin-injection probability for gallium arsenide. Science 292, 1518–1521 (2001).

    Article  CAS  Google Scholar 

  9. Kotissek, P. et al. Cross-sectional imaging of spin injection into a semiconductor. Nature Phys. 3, 872–877 (2007).

    Article  CAS  Google Scholar 

  10. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  Google Scholar 

  11. Tsukagoshi, K., Alphenaar, B. W. & Ago, H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401, 572–574 (1999).

    Article  CAS  Google Scholar 

  12. Dediu, V. et al. Room temperature spin polarized injection in organic semiconductor. Solid State Commun. 122, 181–184 (2002).

    Article  CAS  Google Scholar 

  13. Shim, J. H. et al. Large spin diffusion length in an amorphous organic semiconductor. Phys. Rev. Lett. 100, 226603 (2008).

    Article  CAS  Google Scholar 

  14. Wang, F. J., Yang, C. G., Vardeny, Z. V. & Li, X. G. Spin response in organic spin valves based on La2/3Sr1/3MnO3 electrodes. Phys. Rev. B 75, 245324 (2007).

    Article  Google Scholar 

  15. Jiang, J. S., Pearson, J. E. & Bader, S. D. Absence of spin transport in the organic semiconductor Alq3 . Phys. Rev. B 77, 035303 (2008).

    Article  Google Scholar 

  16. Prokscha, T. et al. The new high-intensity surface muon beam μE4 for the generation of low-energy muons at PSI. Physica B 374, 460–462 (2006).

    Article  Google Scholar 

  17. Bakule, P. & Morenzoni, E. Generation and applications of slow polarized muons. Contemp. Phys. 45, 203–225 (2004).

    Article  CAS  Google Scholar 

  18. Drew, A. et al. Coexistence and coupling of superconductivity and magnetism in thin film structures. Phys. Rev. Lett. 95, 197201 (2005).

    Article  CAS  Google Scholar 

  19. Suter, A. et al. Direct observation of nonlocal effects in a superconductor. Phys. Rev. Lett. 92, 087001 (2004).

    Article  CAS  Google Scholar 

  20. Yunus, M. et al. Ambipolar electrical spin injection and spin transport in organic semiconductors. J. Appl. Phys. 103, 103714 (2008).

    Article  Google Scholar 

  21. Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  CAS  Google Scholar 

  22. Demonkritov, S. et al. Magnetic-dipole mechanism for biquadratic interlayer coupling. Phys. Rev. B 49, 720–723 (1994).

    Article  Google Scholar 

  23. Altbir, D., Kiwi, M., Ramirez, R. & Schuller, I. K. Dipolar interaction and its interplay with interface roughness. J. Magn. Magn. Mater. 149, L246–L250 (1995).

    Article  CAS  Google Scholar 

  24. Park, J. H. et al. Magnetic properties at surface boundary of a half-metallic ferromagnet La0.7Sr0.3MnO3 . Phys. Rev. Lett. 81, 1953–1956 (1998).

    Article  CAS  Google Scholar 

  25. Tsymbal, E. Y., Mryasov, O. N. & LeClair, P. R. Spin-dependent tunnelling in magnetic tunnel junctions. J. Phys. Condens. Matter 15, R109–142 (2003).

    Article  CAS  Google Scholar 

  26. Malliaras, G. G, Shen, Y., Dunlap, D. H., Murata, H. & Kafafi, Z. H. Nondispersive electron transport in Alq3 . Appl. Phys. Lett. 79, 2582–2582 (2001).

    Article  CAS  Google Scholar 

  27. Bässler, H. Charge transport in organic photoconductors. Phys. Status Solidi B 175, 15–56 (1993).

    Article  Google Scholar 

  28. Cölle, M., Gärditz, C. & Braun, M. The triplet state in tris-(8-hydroxyquinoline)aluminium. J. Appl. Phys. 96, 6133–6141 (2004).

    Article  Google Scholar 

  29. Grecu, M. N., Mirea, A., Ghica, C., Cölle, M. & Schwoerer, M. Paramagnetic defect centres in crystalline Alq3 . J. Phys. Condens. Matter 17, 6271–6283 (2005).

    Article  CAS  Google Scholar 

  30. Prokscha, T. et al. The new μE4 beam at PSI: A hybrid-type large acceptance channel for the generation of a high intensity surface-muon beam. Nucl. Instrum. Methods A 595,317–331 (2008).

    Article  CAS  Google Scholar 

  31. Prokscha, T. et al. <http://lmu.web.psi.ch/lem/index.html>.

  32. Morenzoni, E. et al. Generation of very slow polarized positive muons. Phys. Rev. Lett. 72, 2793–2796 (1994).

    Article  CAS  Google Scholar 

  33. Morenzoni, E. et al. Implantation studies of keV positive muons in thin metallic layers. Nucl. Instrum. Methods B 192, 254–266 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Schweizer Nationalfonds (SNF) Nos 200021-111690 and 200020-119784 and the NCCR Materials with Novel Electronic Properties (MaNEP) programme. Experiments were carried out at the Swiss Muon Source, Paul Scherrer Institute, Villigen, Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

A.J.D. was responsible for project planning. A.J.D, J.H., L.S., F.L.P., A.S., N.A.M., V.K.M., A.D., K.W.K., H.B., R.S., G.J.N., T.P. and E.M. were responsible for the experimental measurements. A.J.D., J.H., L.S., F.L.P., A.S., T.K., W.P.G. and C.B. were responsible for the analysis and interpretation. A.J.D., P.D., P.S., T.K. and W.P.G. were responsible for the sample growth and characterization. The bespoke floating current source was designed, built and tested by A.J.D., A.S. and F.B.

Corresponding author

Correspondence to A. J. Drew.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1856 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drew, A., Hoppler, J., Schulz, L. et al. Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation. Nature Mater 8, 109–114 (2009). https://doi.org/10.1038/nmat2333

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2333

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing