Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electronic two-terminal bistable graphitic memories

Abstract

Transistors are the basis for electronic switching and memory devices as they exhibit extreme reliabilities with on/off ratios of 104–105, and billions of these three-terminal devices can be fabricated on single planar substrates. On the other hand, two-terminal devices coupled with a nonlinear current–voltage response can be considered as alternatives provided they have large and reliable on/off ratios and that they can be fabricated on a large scale using conventional or easily accessible methods. Here, we report that two-terminal devices consisting of discontinuous 5–10 nm thin films of graphitic sheets grown by chemical vapour deposition on either nanowires or atop planar silicon oxide exhibit enormous and sharp room-temperature bistable current–voltage behaviour possessing stable, rewritable, non-volatile and non-destructive read memories with on/off ratios of up to 107 and switching times of up to 1 μs (tested limit). A nanoelectromechanical mechanism is proposed for the unusually pronounced switching behaviour in the devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The G–SiO2 nanocable devices and their IV behaviour.
Figure 2: Memory properties of G–SiO2 nanocable devices.
Figure 3: Possible NEM switching mechanism in G-based nanocables.
Figure 4: Planar-based design of the graphitic bistable IV device.

References

  1. Lau, C. N., Stewart, D. R., Williams, R. S. & Bockrath, M. Direct observation of nanoscale switching centers in metal/molecule/metal structures. Nano Lett. 4, 569–572 (2004).

    Article  CAS  Google Scholar 

  2. Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

    Article  CAS  Google Scholar 

  3. Dong, Y., Yu, G., McAlpine, M. C., Lu, W. & Lieber, C. M. Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett. 8, 386–391 (2008).

    Article  CAS  Google Scholar 

  4. Kinoshita, K., Tamura, T., Aoki, M., Sugiyama, Y & Tanaka, H. Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide. Appl. Phys. Lett. 89, 103509 (2006).

    Article  Google Scholar 

  5. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  6. Li, J. & Zhang, Q. Room-temperature negative differential conductance in carbon nanotubes. Carbon 43, 667–670 (2005).

    Article  CAS  Google Scholar 

  7. Li, Y. F., Hatakeyama, R., Kaneko, T., Kato, T. & Okada, T. Negative differential resistance in tunneling transport through C60 encapsulated double-walled carbon nanotubes. Appl. Phys. Lett. 90, 073106 (2007).

    Article  Google Scholar 

  8. Larade, B., Taylor, J., Mehrez, H. & Guo, H. Conductance, IV curves, and negative differential resistance of carbon atomic wires. Phys. Rev. B 64, 075420 (2001).

    Article  Google Scholar 

  9. Farajian, A. A., Esfarjani, K. & Kawazoe, Y. Nonlinear coherent transport through doped nanotube junctions. Phys. Rev. Lett. 82, 5084–5087 (1999).

    Article  CAS  Google Scholar 

  10. Léonard, F. & Tersoff, J. Negative differential resistance in nanotube devices. Phys. Rev. Lett. 85, 4767–4770 (2000).

    Article  Google Scholar 

  11. Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

    Article  CAS  Google Scholar 

  12. Franklin, N. R. et al. Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Appl. Phys. Lett. 81, 913–915 (2002).

    Article  CAS  Google Scholar 

  13. Cha, S. N. et al. Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube. Appl. Phys. Lett. 86, 083105 (2005).

    Article  Google Scholar 

  14. Dujardin, E., Derycke, V., Goffman, M. F., Lefèvre, R. & Bourgoin, J. P. Self-assembled switches based on electroactuated multiwalled nanotubes. Appl. Phys. Lett. 87, 193107 (2005).

    Article  Google Scholar 

  15. Deshpande, V. V. et al. Carbon nanotube linear bearing nanoswitches. Nano Lett. 6, 1092–1095 (2006).

    Article  CAS  Google Scholar 

  16. Jang, J. E. et al. Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nature Nanotech. 3, 26–30 (2008).

    Article  CAS  Google Scholar 

  17. Nguyen, D. N., Guertin, S. M., Swift, G. M. & Johnston, A. H. Radiation effects on advanced flash memories. IEEE Trans. Nucl. Sci. 46, 1744–1750 (1999).

    Article  Google Scholar 

  18. Cellere, G. et al. Total ionizing dose effects in NOR and NAND flash memories. IEEE Trans. Nucl. Sci. 54, 1066–1070 (2007).

    Article  CAS  Google Scholar 

  19. Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).

    Article  Google Scholar 

  20. Echtermeyer, T. J. et al. Nonvolatile switching in graphene field-effect devices. IEEE Electron Device Lett. 29, 952–954 (2008).

    Article  CAS  Google Scholar 

  21. Collins, P. G., Hersam, M., Arnold, M., Martel, R. & Avouris, R. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86, 3128–3131 (2001).

    Article  CAS  Google Scholar 

  22. Standley, B. et al. Graphene-based atomic-scale switches. Nano Lett. 8, 3345–3349 (2008).

    Article  CAS  Google Scholar 

  23. Li, Y. B., Bando, Y. & Golberg, D. SiC–SiO2–C coaxial nanocables and chains of carbon nanotube-SiC heterojunctions. Adv. Mater 16, 93–96 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NASA through the TiiMS URETI. The authors thank Y. Bando and D. Golberg of the National Institute for Materials Science, Tsukuba, Japan, for kindly providing G–SiO2–SiC nanocables.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. synthesized G-coated nanocables. Y.L. and A.S. carried out device fabrication, SEM and AFM analyses and electrical measurements. Y.L. also carried out HRTEM analysis. Y.L., A.S. and J.M.T. wrote the paper. J.M.T. oversaw all phases of the research.

Corresponding author

Correspondence to James M. Tour.

Supplementary information

Supplementary Information

Supplementary Information (PDF 592 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Y., Sinitskii, A. & Tour, J. Electronic two-terminal bistable graphitic memories. Nature Mater 7, 966–971 (2008). https://doi.org/10.1038/nmat2331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2331

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing