Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics

Abstract

Nanoparticles are important catalysts for many chemical transformations. However, owing to their structural dispersions, heterogeneous distribution of surface sites and surface restructuring dynamics, nanoparticles are intrinsically heterogeneous and challenging to characterize in ensemble measurements. Using a single-nanoparticle single-turnover approach, we study the redox catalysis of individual colloidal Au nanoparticles in solution, using single-molecule detection of fluorogenic reactions. We find that for product generation, all Au nanoparticles follow a Langmuir–Hinshelwood mechanism but with heterogeneous reactivity; and for product dissociation, three nanoparticle subpopulations are present that show heterogeneous reactivity between multiple dissociation pathways with distinct kinetics. Correlation analyses of single-turnover waiting times further reveal activity fluctuations of individual Au nanoparticles, attributable to both catalysis-induced and spontaneous dynamic surface restructuring that occurs at different timescales at the surface catalytic and product docking sites. The results exemplify the power of the single-molecule approach in revealing the interplay of catalysis, heterogeneous reactivity and surface structural dynamics in nanocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-turnover detection of single-Au-nanoparticle catalysis.
Figure 2: Kinetic mechanism of catalysis.
Figure 3: Heterogeneous reactivity in catalysis and reaction pathways.
Figure 4: Single-nanoparticle catalytic dynamics.

Similar content being viewed by others

References

  1. Somorjai, G. A., Contreras, A. M., Montano, M. & Rioux, R. M. Clusters, surfaces, and catalysis. Proc. Natl Acad. Sci. USA 103, 10577–10583 (2006).

    Article  CAS  Google Scholar 

  2. Ertl, G., Knözinger, H. & Weitkamp, J. Handbook of Heterogeneous Catalysis (VCH, 1997).

    Book  Google Scholar 

  3. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003).

    Article  CAS  Google Scholar 

  4. Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    Article  CAS  Google Scholar 

  5. Heiz, U. & Landman, U. (eds) Nanocatalysis (Springer, 2007).

  6. Bond, G. C., Louis, C. & Thompson, D. T. (eds) Catalysis by Gold (Imperial College Press, 2006).

  7. Crooks, R. M., Zhao, M., Sun, L., Chechik, V. & Yeung, L. K. Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and application to catalysis. Acc. Chem. Res. 34, 181–190 (2001).

    Article  CAS  Google Scholar 

  8. Chen, M. & Goodman, D. W. Catalytic active gold: From nanoparticles to ultrathin films. Acc. Chem. Res. 39, 739–746 (2006).

    Article  CAS  Google Scholar 

  9. Hughes, M. D. et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437, 1132–1135 (2005).

    Article  CAS  Google Scholar 

  10. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  Google Scholar 

  11. Lee, H. et al. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 45, 7824–7828 (2006).

    Article  CAS  Google Scholar 

  12. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocrystals. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  13. Wang, Z. L. New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 15, 1497–1514 (2003).

    Article  CAS  Google Scholar 

  14. Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    Article  CAS  Google Scholar 

  15. Newton, M. A., Belver-Coldeira, C., Martinez-Arias, A. & Fernandez-Garcia, M. Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. Nature Mater. 6, 528–532 (2007).

    Article  CAS  Google Scholar 

  16. Haruta, M., Yamada, N., Kobayashi, T. & Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 115, 301–309 (1989).

    Article  CAS  Google Scholar 

  17. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis (Wiley–Interscience, 1994).

    Google Scholar 

  18. King, D. A. & Woodruff, D. P. (eds) Phase Transitions and Adsorbate Restructuring at Metal Surfaces (Elsevier, 1994).

  19. Novo, C., Funston, A. M. & Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nature Nanotechnol. 3, 598–602 (2008).

    Article  CAS  Google Scholar 

  20. Edman, L., FiSldes-Papp, Z., Wennmalm, S & Rigler, R. The fluctuating enzyme: A single molecule approach. Chem. Phys. 247, 11–22 (1999).

    Article  CAS  Google Scholar 

  21. Velonia, K. et al. Single-enzyme kinetics of CAlB-catalyzed hydrolysis. Angew. Chem. Int. Ed. 44, 560–564 (2005).

    Article  CAS  Google Scholar 

  22. English, B. P. et al. Ever-fluctuating single enzyme molecule: Michaelis-Menton equation revisited. Nature Chem. Biol. 3, 87–94 (2006).

    Article  Google Scholar 

  23. Roeffaers, M. B. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    Article  CAS  Google Scholar 

  24. Smiley, R. D. & Hammes, G. G. Single molecule studies of enzyme mechanisms. Chem. Rev. 106, 3080–3094 (2006).

    Article  CAS  Google Scholar 

  25. Satterfield, C. N. Heterogeneous Catalysis in Practice (McGraw-Hill, 1980).

    Google Scholar 

  26. Lu, H. P., Xun, L. Y. & Xie, X. S. Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998).

    Article  CAS  Google Scholar 

  27. Witkoskie, J. B. & Cao, J. Single molecule kinetics. I. Theoretical analysis of indicators. J. Chem. Phys. 121, 6361–6372 (2004).

    Article  CAS  Google Scholar 

  28. Imbihl, R. & Ertl, G. Oscillatory kinetics in heterogeneous catalysis. Chem. Rev. 95, 697–733 (1995).

    Article  CAS  Google Scholar 

  29. King, D. A. Nonlinear effects in adsorption and reaction dynamics at surfaces: Kinetic oscillations under scrutiny. Surf. Rev. Lett. 1, 435–442 (1994).

    Article  CAS  Google Scholar 

  30. Handley, D. A. in Colloidal Gold: Principles, Methods, and Applications (ed. Hayat, M. A.) 13–32 (Academic, 1989).

    Book  Google Scholar 

  31. Sarkar, S. K. et al. Engineered Holliday junctions as single-molecule reporters for protein-DNA interactions with application to a MerR-family regulator. J. Am. Chem. Soc. 129, 12461–12467 (2007).

    Article  CAS  Google Scholar 

  32. Natan, M. J. & Lyon, L. A. Jr. in Metal Nanoparticles: Synthesis, Characterization, and Application (eds Feldheim, D. L. & Foss, C. A.) 183–205 (Dekker, 2002).

    Google Scholar 

  33. Grabar, K. C., Freeman, R. G., Hommer, M. B. & Natan, M. J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 67, 735–743 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cornell University, ACS Petroleum Research Foundation (47918-G5) and Cornell Centre for Materials Research for financial support and J. Grazul for assistance in TEM.

Author information

Authors and Affiliations

Authors

Contributions

P.C. designed experiments; W.X., J.S.K., Y.-T.E.Y. and P.C. carried out experiments; W.X., J.S.K. and P.C. analysed data; W.X. and P.C. wrote the paper.

Corresponding author

Correspondence to Peng Chen.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1265 kb)

Supplementary Information

Supplementary Movie 1 (MOV 416 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Kong, J., Yeh, YT. et al. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nature Mater 7, 992–996 (2008). https://doi.org/10.1038/nmat2319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing