Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hierarchical nanofabrication of microporous crystals with ordered mesoporosity

Abstract

Shaped zeolite nanocrystals and larger zeolite particles with three-dimensionally ordered mesoporous (3DOm) features hold exciting technological implications for manufacturing thin, oriented molecular sieve films and realizing new selective, molecularly accessible and robust catalysts. A recognized means for controlled synthesis of such nanoparticulate and imprinted materials revolves around templating approaches, yet identification of an appropriately versatile template has remained elusive. Because of their highly interconnected pore space, ordered mesoporous carbon replicas serve as conceptually attractive materials for carrying out confined synthesis of zeolite crystals. Here, we demonstrate how a wide range of crystal morphologies can be realized through such confined growth within 3DOm carbon, synthesized by replication of colloidal crystals composed of size-tunable (about 10–40 nm) silica nanoparticles. Confined crystal growth within these templates leads to size-tunable, uniformly shaped silicalite-1 nanocrystals as well as 3DOm-imprinted single-crystal zeolite particles. In addition, novel crystal morphologies, consisting of faceted crystal outgrowths from primary crystalline particles have been discovered, providing new insight into constricted crystal growth mechanisms underlying confined synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elucidating handles for controlling silica nanoparticle size.
Figure 2: Formation of tunable colloidal crystal templates.
Figure 3: Synthesis of 3DOm carbon templates for confining crystal growth.
Figure 4: Isolatable and faceted silicalite-1 nanocrystals.
Figure 5: 3DOm-imprinted silicalite-1 single crystals.

Similar content being viewed by others

References

  1. Lai, Z. P. et al. Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300, 456–460 (2003).

    CAS  Google Scholar 

  2. Snyder, M. A. & Tsapatsis, M. Hierarchical nano-manufacturing: From shaped zeolite nanoparticles to high performance separation membranes. Angew. Chem. Int. Ed. 46, 7560–7573 (2007).

    Article  CAS  Google Scholar 

  3. Yoon, K. B. Organization of zeolite microcrystals for production of functional materials. Acc. Chem. Res. 40, 29–40 (2007).

    Article  CAS  Google Scholar 

  4. Choi, M. et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Mater. 5, 718–723 (2006).

    Article  CAS  Google Scholar 

  5. Corma, A. & Davis, M. E. Issues in the synthesis of crystalline molecular sieves: Towards the crystallization of low framework-density structures. ChemPhysChem 5, 304–313 (2004).

    Article  CAS  Google Scholar 

  6. Ogura, M. Towards realization of a micro- and mesoporous composite silicate catalyst. Catal. Surv. Asia 12, 16–27 (2008).

    Article  CAS  Google Scholar 

  7. Srivastava, R., Choi, M. & Ryoo, R. Mesoporous materials with zeolite framework: Remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chem. Commun. 43, 4489–4491 (2006).

    Article  Google Scholar 

  8. Sun, Y. & Prins, R. Friedel-Crafts alkylations over hierarchical zeolite catalysts. Appl. Catal. A 336, 11–16 (2008).

    Article  CAS  Google Scholar 

  9. Tao, Y. S., Kanoh, H., Abrams, L. & Kaneko, K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chem. Rev. 106, 896–910 (2006).

    Article  CAS  Google Scholar 

  10. Kim, S.-S., Shah, J. & Pinnavaia, T. J. Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite. Chem. Mater. 15, 1664–1668 (2003).

    Article  CAS  Google Scholar 

  11. Schmidt, I., Madsen, C. & Jacobsen, C. J. H. Confined space synthesis. A novel route to nanosized zeolites. Inorg. Chem. 39, 2279–2283 (2000).

    Article  CAS  Google Scholar 

  12. Jacobsen, C. J. H., Madsen, C., Houzvicka, J., Schmidt, I. & Carlsson, A. Mesoporous zeolite single crystals. J. Am. Chem. Soc. 122, 7116–7117 (2000).

    Article  CAS  Google Scholar 

  13. Yokoi, T. et al. Periodic arrangement of silica nanospheres assisted by amino acids. J. Am. Chem. Soc. 128, 13664–13665 (2006).

    Article  CAS  Google Scholar 

  14. Fang, Y. & Hu, H. An ordered mesoporous aluminosilicate with completely crystalline zeolite wall structure. J. Am. Chem. Soc. 128, 10636–10637 (2006).

    Article  CAS  Google Scholar 

  15. Ogura, M., Zhang, Y., Elangovan, S. P. & Okubo, T. Formation of ZMM-n: The composite materials having both natures of zeolites and mesoporous silica materials. Microporous Mesoporous Mater. 101, 224–230 (2007).

    Article  CAS  Google Scholar 

  16. Schmidt, I. et al. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem. Mater. 13, 4416–4418 (2001).

    Article  CAS  Google Scholar 

  17. Tao, Y., Kanoh, H. & Kaneko, K. ZSM-5 monolith of uniform mesoporous channels. J. Am. Chem. Soc. 125, 6044–6045 (2003).

    Article  CAS  Google Scholar 

  18. Wang, J., Groen, J. C., Yue, W., Zhou, W. & Coppens, M.-O. Facile synthesis of ZSM-5 composites with hierarchical porosity. J. Mater. Chem. 18, 468–474 (2008).

    Article  CAS  Google Scholar 

  19. Jacobsen, C. J. H., Madsen, C., Janssen, A. H., Jakobsen, H. J. & Skibsted, J. Zeolites by confined space synthesis - characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Microporous Mesoporous Mater. 39, 393–401 (2000).

    Article  CAS  Google Scholar 

  20. Janssen, A. H., Schmidt, I., Jacobsen, C. J. H., Koster, A. J. & de Jong, K. P. Exploratory study of mesopore templating with carbon during zeolite synthesis. Microporous Mesoporous Mater. 65, 59–75 (2003).

    Article  CAS  Google Scholar 

  21. Madsen, C. & Jacobsen, C. J. H. Nanosized zeolite crystals—convenient control of crystal size distribution by confined space synthesis. Chem. Commun. 673–674 (1999).

  22. Dessau, R. M., Valyocsik, E. W. & Goeke, N. H. Aluminum zoning in ZSM-5 as revealed by selective silica removal. Zeolites 12, 776–779 (1992).

    Article  CAS  Google Scholar 

  23. Groen, J. C., Jansen, J. C., Moulijn, J. A. & Perez-Ramirez, J. Optimal aluminium-assisted mesoporosity development in MFI zeolites by desilication. J. Phys. Chem. B 108, 13062–13065 (2004).

    Article  CAS  Google Scholar 

  24. Ogura, M. et al. Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution. Chem. Lett. 882–883 (2000).

    Article  Google Scholar 

  25. Ogura, M. et al. Alkali-treatment technique—New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl. Catal. A 219, 33–43 (2001).

    Article  CAS  Google Scholar 

  26. Lew, C. M., Li, Z., Zones, S. I., Sun, M. & Yan, Y. Control of size and yield of pure-silica-zeolite MFI nanocrystals by addition of methylene blue to the synthesis solution. Microporous Mesoporous Mater. 105, 10–14 (2007).

    Article  CAS  Google Scholar 

  27. Lee, S., Carr, C. S. & Shantz, D. F. Anionic microemulsion-mediated low temperature synthesis of anisotropic silicalite-1 nanocrystals. Langmuir 21, 12031–12036 (2005).

    Article  CAS  Google Scholar 

  28. Davis, T. M. et al. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nature Mater. 5, 400–408 (2006).

    Article  CAS  Google Scholar 

  29. Fedeyko, J. M., Rimer, J. D., Lobo, R. F. & Vlachos, D. G. Spontaneous formation of silica nanoparticles in basic solutions of small tetraalkylammonium cations. J. Phys. Chem. B 108, 12271–12275 (2004).

    Article  CAS  Google Scholar 

  30. Kragten, D. D. et al. Structure of the silica phase extracted from silica/(TPA)OH solutions containing nanoparticles. J. Phys. Chem. B 107, 10006–10016 (2003).

    Article  CAS  Google Scholar 

  31. Schoeman, B. J. Analysis of the nucleation and growth of TPA-silicalite-1 at elevated temperatures with the emphasis on colloidal stability. Microporous Mesoporous Mater. 22, 9–22 (1998).

    Article  CAS  Google Scholar 

  32. Schoeman, B. J. & Regev, O. A study of the initial stage in the crystallization of TPA-silicalite-1. Zeolites 17, 447–456 (1996).

    Article  CAS  Google Scholar 

  33. Yang, S. Y., Navrotsky, A., Wesolowski, D. J. & Pople, J. A. Study on synthesis of TPA-silicalite-1 from initially clear solutions of various base concentrations by in situ calorimetry, potentiometry, and SAXS. Chem. Mater. 16, 210–219 (2004).

    Article  CAS  Google Scholar 

  34. Stober, W. & Fink, A. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  35. Davis, T. M., Snyder, M. A., Krohn, J. E. & Tsapatsis, M. Nanoparticles in lysine–silica sols. Chem. Mater. 18, 5814–5816 (2006).

    Article  CAS  Google Scholar 

  36. Snyder, M. A., Lee, J. A., Davis, T. M., Scriven, L. E. & Tsapatsis, M. Silica nanoparticle crystals and ordered coatings using Lys-Sil and a novel coating device. Langmuir 23, 9924–9928 (2007).

    Article  CAS  Google Scholar 

  37. Glatter, O. New method for evaluation of small-angle scattering data. J. Appl. Cryst. 10, 415–421 (1977).

    Article  Google Scholar 

  38. Glatter, O. Interpretation of real-space information from small-angle scattering experiments. J. Appl. Cryst. 12, 166–175 (1979).

    Article  CAS  Google Scholar 

  39. Iler, R. K. The Chemistry of Silica (Wiley, 1979).

    Google Scholar 

  40. Chang, S. M., Lee, M. & Kim, W.-S. Preparation of large monodispersed spherical silica particles using seed particle growth. J. Colloid Interface Sci. 286, 536–542 (2005).

    Article  CAS  Google Scholar 

  41. Giesche, H. Synthesis of monodispersed silica powders II. Controlled growth reaction and continuous production process. J. Eur. Ceram. Soc. 14, 205–214 (1994).

    Article  CAS  Google Scholar 

  42. Dokter, W. H., Vangarderen, H. F., Beelen, T. P. M., Vansanten, R. A. & Bras, W. Homogeneous versus heterogeneous zeolite nucleation. Angew. Chem. Int. Ed. 34, 73–75 (1995).

    Article  CAS  Google Scholar 

  43. Houssin, C. J. Y. et al. Combined in situ Si-29 NMR and small-angle X-ray scattering study of precursors in MFI zeolite formation from silicic acid in TPAOH solutions. Phys. Chem. Chem. Phys. 5, 3518–3524 (2003).

    Article  CAS  Google Scholar 

  44. Mintova, S., Olson, N. H., Senker, J. & Bein, T. Mechanism of the transformation of silica precursor solutions into Si-MFI zeolite. Angew. Chem. Int. Ed. 41, 2558 (2002).

    Article  CAS  Google Scholar 

  45. Mintova, S., Olson, N. H., Valtchev, V. & Bein, T. Mechanism of zeolite A nanocrystal growth from colloids at room temperature. Science 283, 958–960 (1999).

    Article  CAS  Google Scholar 

  46. Nikolakis, V., Kokkoli, E., Tirrell, M., Tsapatsis, M. & Vlachos, D. G. Zeolite growth by addition of subcolloidal particles: Modeling and experimental validation. Chem. Mater. 12, 845–853 (2000).

    Article  CAS  Google Scholar 

  47. Xu, W. Y., Dong, J. S., Li, J. P., Li, J. P. & Wu, F. A novel method for the preparation of zeolite ZSM-5. J. Chem. Soc., Chem. Commun. 755–756 (1990).

  48. Talmon, Y. Modern Characterization Methods of Surfactant systems (Marcel Dekker, 1999).

    Google Scholar 

  49. Holland, B. T., Abrams, L. & Stein, A. Dual templating of macroporous silicates with zeolitic microporous frameworks. J. Am. Chem. Soc. 121, 4308–4309 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support for this work from the National Science Foundation (CMMI-0707610). The authors also acknowledge T. M. Davis for cryo-TEM images taken of the nanoparticle sols. Characterization was carried out at the Minnesota Characterization Facility, which receives support from the NSF through the National Nanotechnology Infrastructure Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tsapatsis.

Supplementary information

Supplementary Information

Supplementary Information (PDF 22903 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, W., Snyder, M., Kumar, S. et al. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Mater 7, 984–991 (2008). https://doi.org/10.1038/nmat2302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing