Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Boosting migration of large particles by solute contrasts

Abstract

Brownian diffusion is a keystone concept in a large variety of domains, from physics, chemistry to biology1. Diffusive transport controls situations as diverse as reaction–diffusion processes in biology and chemistry2,3,4, Brownian ratchet processes5,6,7, dispersion in microfluidic devices8,9 or even double-diffusive instability and salt-fingering phenomena in the context of ocean mixing10. Although these examples span a broad range of length scales, diffusive transport becomes increasingly inefficient for larger particles. Applications, for example, in microfluidics, usually have recourse to alternative driving methods involving external sources to induce and control migration. Here, we demonstrate experimentally a strongly enhanced migration of large particles, achieved by slaving their dynamics to that of a fast carrier species, a dilute salt. The underlying fast salt diffusion leads to an apparent diffusive-like dynamics of the large particles, which is up to two orders of magnitude faster than their natural ‘bare’ diffusion. Moreover both spreading and focusing of the particle assembly can be achieved on demand. A model description shows a remarkable quantitative agreement with all measured data. Applications of this process are illustrated in microfluidics for filtering and concentrating operations, as well as in conjunction with standard hydrodynamic focusing. In a wider perspective, this mechanism can affect a broad range of scales and phenomena, from biological transport to the dispersion of sediments and pollutants in oceanographic situations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solute-induced spreading or focusing of colloidal particles.
Figure 2: Salt-induced enhanced migration of the particles.
Figure 3: Dynamical evolution of the colloid density profiles.
Figure 4: Microfluidic application of the diffusiophoretic effect.

Similar content being viewed by others

References

  1. Frey, E. & Kroy, K. Brownian motion: A paradigm of soft matter and biological physics. Ann. Phys. 14, 20–50 (2005).

    Article  CAS  Google Scholar 

  2. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    Article  CAS  Google Scholar 

  3. Krischer, K. Nonlinear dynamics in electrochemical systems. Adv. Electrochem. Sci. Eng. 8, 89–208 (2003).

    CAS  Google Scholar 

  4. Sick, S., Reinker, S., Timmer, J. & Schlake, T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314, 1447–1450 (2006).

    Article  CAS  Google Scholar 

  5. Rousselet, J., Salome, L., Ajdari, A. & Prost, J. Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370, 446–448 (1994).

    Article  CAS  Google Scholar 

  6. Matthias, S. & Müller, F. Asymmetric pores in a silicon membrane acting as massively parallel Brownian ratchets. Nature 424, 53–57 (2003).

    Article  CAS  Google Scholar 

  7. Lizunov, V. & Zimmerberg, J. Cellular biophysics: Bacterial endospore, membranes and random fluctuation. Curr. Biol. 16, R1025–R1028 (2006).

    Article  CAS  Google Scholar 

  8. Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: Microfluidics towards a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004).

    Article  Google Scholar 

  9. Squires, T. & Quake, S. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

    Article  CAS  Google Scholar 

  10. Merryfield, B. Ocean mixing in 10 steps. Science 308, 64–642 (2005).

    Article  Google Scholar 

  11. Duhr, S. & Braun, D. Why molecules move along a temperature gradient. Proc. Natl Acad. Sci. 103, 19678–19682 (2006).

    Article  CAS  Google Scholar 

  12. Anderson, J. L. Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 61–99 (1989).

    Article  Google Scholar 

  13. Stroock, A. D. et al. Chaotic mixer for microchannels. Science 295, 647–651 (2002).

    Article  CAS  Google Scholar 

  14. Huang, L. R., Cox, E. C., Austin, R. H. & Sturm, J. C. Continuous particle separation through deterministic lateral displacement. Science 304, 987–990 (2004).

    Article  CAS  Google Scholar 

  15. Baaske, P. et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc. Natl Acad. Sci. 104, 9346–9351 (2007).

    Article  CAS  Google Scholar 

  16. Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

    Article  CAS  Google Scholar 

  17. Mano, N. & Heller, A. Bioelectrochemical propulsion. J. Am. Chem. Soc. 127, 11574–11575 (2005).

    Article  CAS  Google Scholar 

  18. Ros, A. et al. Absolute negative particle mobility. Nature 436, 928 (2005).

    Article  CAS  Google Scholar 

  19. Prieve, D. & Roman, R. Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. J. Chem. Soc. Faraday Trans. 83, 1287–1306 (1987).

    Article  CAS  Google Scholar 

  20. Ebel, J. P., Anderson, J. L. & Prieve, D. C. Diffusiophoresis of latex particles in electrolyte gradients. Langmuir 4, 396–406 (1988).

    Article  CAS  Google Scholar 

  21. Ajdari, A. & Bocquet, L. Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-osmosis and beyond. Phys. Rev. Lett. 96, 186102 (2006).

    Article  Google Scholar 

  22. Hunter, R. J. Foundations of Colloid Science (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  23. Munson, M. S., Cabrera, C. R. & Yager, P. Passive electrophoresis in microchannels using liquid junction potentials. Electrophoresis 23, 2642–2652 (2002).

    Article  CAS  Google Scholar 

  24. Lee, G.-B., Chang, C.-C., Huang, S.-B. & Yang, R.-J. The hydrodynamic focusing effect inside rectangular microchannels. J. Micromech. Microeng. 16, 1024–1032 (2006).

    Article  Google Scholar 

  25. Knight, J. B., Vishwanath, A., Brody, J. P. & Austin, R. H. Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds. Phys. Rev. Lett. 80, 3863–3866 (1998).

    Article  CAS  Google Scholar 

  26. Berg, H. C. E. Coli in Motion (Springer, New York, 2003).

    Google Scholar 

  27. Qi, Y. & Adler, J. Salt taxis in Escherichia coli bacteria and its lack in mutants. Proc. Natl Acad. Sci. USA 86, 8358–8362 (1989).

    Article  CAS  Google Scholar 

  28. Dror, I., Amitay, T., Yaron, B. & Berkowitz, B. Salt-pump mechanism for contaminant intrusion into coastal aquifers. Science 300, 950 (2003).

    Article  CAS  Google Scholar 

  29. Bourgoin, M., Ouellette, N. T., Xu, H., Berg, J. & Bodenschatz, E. The role of pair dispersion in turbulent flow. Science 311, 835–838 (2006).

    Article  CAS  Google Scholar 

  30. Villermaux, E. & Duplat, J. Coarse grained scale of turbulent mixtures. Phys. Rev. Lett. 97, 144506 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Bellier and P. Joseph for fruitful interactions, B. Burdin and CTμ for the confocal images and S. Roux for his help in the zeta potential measurements. L.B. acknowledges illuminating discussions with A. Colin, D. Braun, M. Bourgoin, H.C. Berg and G. Pawlak and support from the von Humboldt foundation. This work was supported by A.N.R. program pNANO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bocquet.

Supplementary information

Supplementary Information

Supplementary Information (PDF 668 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abécassis, B., Cottin-Bizonne, C., Ybert, C. et al. Boosting migration of large particles by solute contrasts. Nature Mater 7, 785–789 (2008). https://doi.org/10.1038/nmat2254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing