Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A complete representation of structure–property relationships in crystals

Abstract

Whereas structure–property relationships have long guided the discovery and optimization of novel materials1,2,3, formal quantitative methods to identify such relationships in crystalline systems are beginning to emerge4,5,6,7,8. Among them is cluster expansion9,10,11,12,13, which has been successfully used to parametrize the configurational dependence of important scalar physical properties such as bandgaps14, Curie temperatures15, equation-of-state parameters16,17 and densities of states18,19,20. However, cluster expansion is currently unable to handle anisotropic properties, a key distinguishing feature of crystalline systems central to the design of modern epitaxial structures and devices. Here, I introduce a tensorial cluster expansion enabling the prediction of fundamental tensor-valued material properties such as elasticity, piezoelectricity, dielectric constants, optoelectric coupling, anisotropic diffusion coefficients, surface energy and stress. As an application, I develop predictive ab initio models of anisotropic properties relevant to the design and optimization of III–V semiconductor epitaxial optoelectronic devices21,22.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Graphical representation of each term of the TCE on the cation sublattice of the wurtzite structure expressing the configurational dependence of a symmetric rank-two tensor.
Figure 2: Structure–property relationships.

References

  1. Olson, G. Computational design of hierarchically structured materials. Science 277, 1237–1242 (1997).

    Article  CAS  Google Scholar 

  2. Liu, Z. K., Chen, L. Q. & Rajan, K. Linking length scales via materials informatics. JOM 58, 42–50 (2006).

    Article  CAS  Google Scholar 

  3. Ashby, M. F. Materials Selection in Mechanical Design 2nd edn (Butterworth-Heinemann, Oxford, 1999).

    Google Scholar 

  4. Morgan, D., Ceder, G. & Curtarolo, S. High-throughput and data mining with ab-initio methods. Meas. Sci. Technol. 16, 296–301 (2005).

    Article  CAS  Google Scholar 

  5. Morgan, D. & Ceder, G. in Handbook of Materials Modeling Volume Part A (ed. Yip, S.) 395–422 (Springer, Dordrecht, 2005).

    Book  Google Scholar 

  6. Suh, C. & Rajan, K. Virtual screening and QSAR formulations for crystal chemistry. QSAR Comb. Sci. 24, 114–119 (2005).

    Article  CAS  Google Scholar 

  7. Johannesson, G. H. et al. Combined electronic structure and evolutionary search approach to materials design. Phys. Rev. Lett. 88, 255506 (2002).

    Article  CAS  Google Scholar 

  8. Rajan, K. Materials informatics. Mater. Today 8, 38–45 (2005).

    Article  CAS  Google Scholar 

  9. Sanchez, J. M., Ducastelle, F. & Gratias, D. Generalized cluster description of multicomponent systems. Physica A 128, 334–350 (1984).

    Article  Google Scholar 

  10. de Fontaine, D. Cluster approach to order–disorder transformation in alloys. Solid State Phys. 47, 33–176 (1994).

    Article  Google Scholar 

  11. Zunger, A. in NATO ASI on Statics and Dynamics of Alloy Phase Transformation Vol. 319 (eds Turchi, P. E. & Gonis, A.) 361–419 (Plenum, New York, 1994).

    Book  Google Scholar 

  12. Asta, M., Ozolins, V. & Woodward, C. A first-principles approach to modeling alloy phase equilibria. J. Mineral. Met. Mater. Soc. 53, 16–19 (2001).

    Article  CAS  Google Scholar 

  13. Ceder, G., van der Ven, A., Marianetti, C. & Morgan, D. First-principles alloy theory in oxides. Modelling Simul. Mater. Sci. Eng. 8, 311–321 (2000).

    Article  CAS  Google Scholar 

  14. Franceschetti, A. & Zunger, A. The inverse band-structure problem of finding an atomic configuration with given electronic properties. Nature 402, 60–63 (1999).

    Article  CAS  Google Scholar 

  15. Franceschetti, A. et al. First-principles combinatorial design of transition temperatures in multicomponent systems: The case of Mn in GaAs. Phys. Rev. Lett. 97, 047202 (2006).

    Article  CAS  Google Scholar 

  16. Asta, M., McCormack, R. & de Fontaine, D. Theoretical study of alloy stability in the Cd–Mg system. Phys. Rev. B 48, 748–766 (1993).

    Article  CAS  Google Scholar 

  17. Geng, H. Y., Sluiter, M. H. F. & Chen, N. X. Order-disorder effects on the equation of state for fcc Ni–Al alloys. Phys. Rev. B 72, 014204 (2005).

    Article  Google Scholar 

  18. Garbulsky, G. D. & Ceder, G. Effect of lattice vibrations on the ordering tendencies in substitutional binary alloys. Phys. Rev. B 49, 6327–6330 (1994).

    Article  CAS  Google Scholar 

  19. Geng, H. Y., Sluiter, M. H. F. & Chen, N. X. Cluster expansion of electronic excitations: Application to fcc Ni–Al alloys. J. Chem. Phys. 122, 214706 (2005).

    Article  CAS  Google Scholar 

  20. van de Walle, A. & Ceder, G. The effect of lattice vibrations on substitutional alloy thermodynamics. Rev. Mod. Phys. 74, 11–45 (2002).

    Article  Google Scholar 

  21. Pearton, S. J., Zolper, J. C., Shul, R. J. & Ren, F. GaN: Processing, defects, and devices. J. Appl. Phys. 86, 1–78 (1999).

    Article  CAS  Google Scholar 

  22. Ambacher, O. Growth and applications of group III-nitrides. J. Phys. D 31, 2653–2710 (1998).

    Article  CAS  Google Scholar 

  23. Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Univ. Press, USA, 1985).

    Google Scholar 

  24. Liu, J. Z., van de Walle, A., Ghosh, G. & Asta, M. Structure, energetics, and mechanical stability of Fe–Cu bcc alloys from first-principles calculations. Phys. Rev. B 72, 144109 (2005).

    Article  Google Scholar 

  25. Laks, D. B., Ferreira, L. G., Froyen, S. & Zunger, A. Efficient cluster expansion for substitutional systems. Phys. Rev. B 46, 12587–12605 (1992).

    Article  CAS  Google Scholar 

  26. van de Walle, A. & Ceder, G. Automating first-principles phase diagram calculations. J. Phase Equilib. 23, 348–359 (2002).

    Article  Google Scholar 

  27. Lund, A. & Voorhees, P. W. The effects of elastic stress on coarsening in the Ni–Al system. Acta Mater. 50, 2085–2098 (2002).

    Article  CAS  Google Scholar 

  28. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  29. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  30. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the US National Science Foundation through TeraGrid resources provided by NCSA and SDSC under grant DMR060011N and through the Center for the Science and Engineering of Materials at Caltech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. van de Walle.

Supplementary information

Supplementary Information

Supplementary Discussion 1 & 2 (PDF 193 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van de Walle, A. A complete representation of structure–property relationships in crystals. Nature Mater 7, 455–458 (2008). https://doi.org/10.1038/nmat2200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing