Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction

Abstract

Surface atoms have fewer interatomic bonds than those in the bulk that they often relax and reconstruct on extended two-dimensional surfaces. Far less is known about the surface structures of nanocrystals. Here, we show that coherent diffraction patterns recorded from individual nanocrystals are very sensitive to the atomic structure of nanocrystal surfaces. Nanocrystals of Au of 3–5 nm in diameter were studied by examining diffraction intensity oscillations around the Bragg peaks. Both results obtained from modelling the experimental data and molecular dynamics simulations strongly suggest inhomogeneous relaxations, involving large out-of-plane bond length contractions for the edge atoms (0.2 Å); a significant contraction (0.13 Å) for {100} surface atoms; and a much smaller contraction (0.05 Å) for atoms in the middle of the {111} facets. These results denote a coordination/facet dependence that markedly differentiates the structural dynamics of nanocrystals from bulk crystalline surfaces.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Coherent electron diffraction pattern recorded from a single, faceted, Au nanocrystal (4 nm in size).
Figure 2: Experimental diffraction intensities of a Au nanocrystal and their modelling.
Figure 3: Bond length distributions in the Au nanocrystal obtained by modelling the experimental diffraction pattern.
Figure 4: Surface atom contraction obtained from the molecular dynamics simulation.

References

  1. Bohnen, K. P. & Ho, K. M. Structure and dynamics at metal surfaces. Surf. Sci. Rep. 19, 99–120 (1993).

    CAS  Article  Google Scholar 

  2. Smoluchowski, R. Anisotropy of the electronic work function of metals. Phys. Rev. 60, 661 (1941).

    CAS  Article  Google Scholar 

  3. Finnis, M. W. & Heine, V. Theory of lattice contraction at aluminium surfaces. J. Phys. F 4, L37 (1974).

    CAS  Article  Google Scholar 

  4. Pauling, L. Atomic radii and interatomic distances in metals. J. Am. Chem. Soc. 69, 542–553 (1947).

    CAS  Article  Google Scholar 

  5. Ibach, H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 195–263 (1997).

    Article  Google Scholar 

  6. Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647 (1998).

    CAS  Article  Google Scholar 

  7. Gilbert, B., Huang, F., Zhang, H., Waychunas, G. A. & Banfield, J. F. Nanoparticles: Strained Stiff. Sci. 305, 651–654 (2004).

    CAS  Google Scholar 

  8. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    CAS  Article  Google Scholar 

  9. Marks, L. D. Experimental studies of small particles structures. Rep. Prog. Phys. 57, 603 (1994).

    CAS  Article  Google Scholar 

  10. Cleveland, C. L. et al. Structural evolution of smaller gold nanocrystals: The truncated decahedral motif. Phys. Rev. Lett. 79, 1873 (1997).

    CAS  Article  Google Scholar 

  11. Balerna, A. et al. A structural investigation on small gold clusters by EXAFS. Surf. Sci. 156, 206–213 (1985).

    CAS  Article  Google Scholar 

  12. Menard, L. D. et al. Metal core bonding motifs of monodisperse icosahedral Au-13 and larger Au monolayer-protected clusters as revealed by X-ray absorption spectroscopy and transmission electron microscopy. J. Phys. Chem. B 110, 14564–14573 (2006).

    CAS  Article  Google Scholar 

  13. Zhang, P. & Sham, T. K. X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: The interplay of size and surface effects. Phys. Rev. Lett. 90, 245502 (2003).

    Article  Google Scholar 

  14. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 angstrom resolution. Science 318, 430–433 (2007).

    CAS  Article  Google Scholar 

  15. Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. Catal. Technol. 6, 102 (2002).

    CAS  Google Scholar 

  16. Freund, H.-J., Libuda, J., Baumer, M., Risse, T. & Carlsson, A. Clusters, facets and edges: Site-dependent selective chemistry on model catalysts. The Chem. Record 3, 181 (2003).

    CAS  Article  Google Scholar 

  17. Williams, G. J., Pfeifer, M. A., Vartanyants, I. A. & Robinson, I. K. Three-dimensional imaging of microstructure in Au nanocrystals. Phys. Rev. Lett. 90, 175501 (2003).

    CAS  Article  Google Scholar 

  18. Pfeifer, M. A., Williams, G. J., Vartanyants, I. A., Harder, R. & Robinson, I. K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442, 63–66 (2006).

    CAS  Article  Google Scholar 

  19. Foiles, S. M., Baskes, M. I. & Daw, M. S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986).

    CAS  Article  Google Scholar 

  20. Haftel, M. I., Bernstein, N., Mehl, M. J. & Papaconstantopoulos, D. A. Interlayer surface relaxations and energies of fcc metal surfaces by a tight-binding method. Phys. Rev. B 70 (2004).

  21. van Hove, M. A. et al. The surface reconstructions of the (100) crystal faces of iridium, platinum and gold.1. Experimental-observations and possible structural models. Surf. Sci. 103, 189–217 (1981).

    CAS  Article  Google Scholar 

  22. Rieder, K. H., Engel, T., Swendsen, R. H. & Manninen, M. A helium diffraction study of the reconstructed Au(100) surface. Surf. Sci. 127, 223–242 (1983).

    CAS  Article  Google Scholar 

  23. Heyraud, J. C. & Metois, J. J. Equilibrium shape of gold crystallites on a graphite cleavage surface–surface energies and interfacial energy. Acta Metall. 28, 1789–1797 (1980).

    CAS  Article  Google Scholar 

  24. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Butterworth-Heinemann, Oxford, 1986).

    Google Scholar 

  25. Harder, R., Pfeifer, M. A., Williams, G. J., Vartaniants, I. A. & Robinson, I. K. Orientation variation of surface strain. Phys. Rev. B 76, 115425 (2007).

    Article  Google Scholar 

  26. Shibue, T., Nakanishi, T., Matsuda, T., Asahi, T. & Osaka, T. Thermal desorption high-resolution mass spectrometry of mixed self-assembled monolayers on gold. Langmuir 18, 1528–1534 (2002).

    CAS  Article  Google Scholar 

  27. Kondoh, H., Kodama, C., Sumida, H. & Nozoye, H. Molecular processes of adsorption and desorption of alkanethiol monolayers on Au(111). J. Chem. Phys. 111, 1175–1184 (1999).

    CAS  Article  Google Scholar 

  28. Bonzel, H. P. 3D equilibrium crystal shapes in the new light of STM and AFM. Phys. Rep. 385, 1–67 (2003).

    CAS  Article  Google Scholar 

  29. Iijima, S. & Ichihashi, T. Structural instability of ultrafine particles of metals. Phys. Rev. Lett. 56, 616–619 (1986).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The work was supported by NSF Career Award, DMR 0449790 (W.J.H., J.M.Z.), DOE DEFG02-01ER45923 (R.S., J.T., J.M.Z.) and DEFG02-03ER15476 (R.G.N., L.D.M.). The electron microscopy work was carried out in the Center for Microanalysis of Materials, University of Illinois, which is partially supported by the US Department of Energy under grant DEFG02-91-ER45439.

Author information

Authors and Affiliations

Authors

Contributions

W.J.H., R.S., J.T. and J.M.Z. carried out the diffraction experiment, modelling and analysis. L.D.M. and R.G.N. carried out particle synthesis.

Corresponding author

Correspondence to J. M. Zuo.

Supplementary information

Supplementary Information

Supplementary figures S1–S4 (PDF 663 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, W., Sun, R., Tao, J. et al. Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nature Mater 7, 308–313 (2008). https://doi.org/10.1038/nmat2132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2132

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing