Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil

Abstract

Developing bactericidal coatings using simple green chemical methods could be a promising route to potential environmentally friendly applications. Here, we describe an environmentally friendly chemistry approach to synthesize metal-nanoparticle (MNP)-embedded paint, in a single step, from common household paint. The naturally occurring oxidative drying process in oils, involving free-radical exchange, was used as the fundamental mechanism for reducing metal salts and dispersing MNPs in the oil media, without the use of any external reducing or stabilizing agents. These well-dispersed MNP-in-oil dispersions can be used directly, akin to commercially available paints, on nearly all kinds of surface such as wood, glass, steel and different polymers. The surfaces coated with silver-nanoparticle paint showed excellent antimicrobial properties by killing both Gram-positive human pathogens (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The process we have developed here is quite general and can be applied in the synthesis of a variety of MNP-in-oil systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Chemical structure of common fatty acids in drying oils, and synthesis and characterization of AgNPs in alkyd resins.
Figure 2: Metal-salt-containing drying oils, and nanoparticle-embedded paint coatings.
Figure 3: AuNP synthesis in cardanol-based polymer films.
Figure 4: Summary of the antibacterial properties of AgNP-containing paints.

References

  1. 1

    Daniel, S. (ed.) Bailey’s Industrial Oil and Fat Products (Wiley, New York, 1964).

  2. 2

    Metzger, J. O. & Bornscheuer, U. Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Appl. Microbiol. Biotechnol. 71, 13–22 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Bieleman, J. H. Additives for Coatings (Wiley-VCH, Weinheim, 2000).

    Book  Google Scholar 

  4. 4

    Black, J. F. Metal-catalyzed autoxidation. The unrecognized consequences of metal-hydroperoxide complex formation. J. Am. Chem. Soc. 100, 527–535 (1978).

    CAS  Article  Google Scholar 

  5. 5

    Reich, L. & Stivala, S. Autoxidation of Hydrocarbons and Polyolefins (Marcel Dekker, New York, 1969).

    Google Scholar 

  6. 6

    Bohannon, J. ‘Smart coatings’ research shows the virtues of superficiality. Science 309, 376–377 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Crisp, M. T. & Kotov, N. A. Preparation of nanoparticle coatings on surfaces of complex geometry. Nano Lett. 3, 173–177 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Klaus, T., Joerger, R., Olsson, E. & Granqvist, C.-G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl Acad. Sci. USA 96, 13611–13614 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Zhang, J. et al. Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem. Int. Edn 45, 1116–1119 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Okitsu, K. et al. Synthesis of palladium nanoparticles with interstitial carbon by sonochemical reduction of tetrachloropalladate(II) in aqueous solution. J. Phys. Chem. B 101, 5470–5472 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Aymonier, C. et al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem. Commun. 3018–3019 (2002).

  12. 12

    Lu, Y., Liu, G. L. & Lee, L. P. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced raman scattering substrate. Nano Lett. 5, 5–9 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Heilmann, A. Polymer Films with Embedded Metal Nanoparticles (Springer, New York, 2002).

    Google Scholar 

  14. 14

    Dowling, D. P. et al. Anti-bacterial silver coatings exhibiting enhanced activity through the addition of platinum. Surf. Coat. Technol. 163, 637–640 (2003).

    Article  Google Scholar 

  15. 15

    Jiang, H., Manolache, S., Wong, A. C. L. & Denes, F. S. Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J. Appl. Polym. Sci. 93, 1411–1422 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Dai, J. & Bruening, M. L. Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett. 2, 497–501 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Mallia, V. A., Vemula, P. K., John, G., Kumar, A. & Ajayan, P. M. In situ synthesis and assembly of gold nanoparticles embedded glass forming liquid crystals. Angew. Chem. Int. Edn 46, 3269–3274 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Vemula, P. K., Aslam, U., Mallia, V. A. & John, G. In situ synthesis of gold nanoparticles using molecular gels and liquid crystals from vitamin-C amphiphiles. Chem. Mater. 19, 138–140 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Vemula, P. K. & John, G. Smart amphiphiles: hydro/organogelators for in situ reduction of gold. Chem. Commun. 2218–2220 (2006).

  20. 20

    Sambhy, V., MacBride, M. M., Peterson, B. R. & Sen, A. Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials. J. Am. Chem. Soc. 128, 9798–9808 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Lansdown, A. B. Silver. I: Its antibacterial properties and mechanism of action. J. Wound Care. 11, 125–130 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Kenawy, E.-R., Worley, S. D. & Broughton, R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules 8, 1359–1384 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Williams, R. L., Doherty, P. J., Vince, D. G., Grashoff, G. J. & Williams, D. F. The biocompatibility of silver. Crit. Rev. Biocompat. 5, 221–243 (1989).

    CAS  Google Scholar 

  24. 24

    Berger, T. J., Spadaro, J. A., Chapin, S. E. & Becker, R. O. Electrically generated silver ions: Quantitative effects on bacterial and mammalian cells. Antimicrob. Agents Chemother. 9, 357–358 (1976).

    CAS  Article  Google Scholar 

  25. 25

    Alt, V. et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25, 4383 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Podsiadlo, P. et al. Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. Langmuir 21, 11915–11921 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Morones, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Gogoi, S. K. et al. Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22, 9322–9328 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Haldar, J., An, D., de Cienfuegos, L. A., Chen, J. & Klibanov, A. M. Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc. Natl Acad. Sci. USA 103, 17667–17671 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Lewis, K. & Klibanov, A. M. Surpassing nature: Rational design of sterile-surface materials. Trends Biotechnol. 23, 343–348 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E. & Stone, M. O. Biomimetic synthesis and patterning of silver nanoparticles. Nature Mater. 1, 169–172 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Raveendran, P., Fu, J. & Wallen, S. L. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125, 13940–13941 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Yin, H. & Porter, N. A. New insights regarding the autoxidation of polyunsaturated fatty acids. Antioxid. Redox Signal. 7, 170–184 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Anastas, P. T. & Williamson, T. C. Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  35. 35

    Tyman, J. H. P. Non-isoprenoid long chain phenols. Chem. Soc. Rev. 8, 499–537 (1979).

    CAS  Article  Google Scholar 

  36. 36

    John, G. & Pillai, C. K. S. Self-crosslinkable monomer from cardanol: Crosslinked beads of poly(cardanyl acrylate) by suspension polymerization. Makromol. Chem. Rapid Commun. 13, 255–259 (1992).

    CAS  Article  Google Scholar 

  37. 37

    John, G. & Pillai, C. K. S. Synthesis and characterization of a self-crosslinkable polymer from cardanol: Autooxidation of poly(cardanyl acrylate) to crosslinked film. J. Polym. Sci. A 31, 1069–1073 (1993).

    CAS  Article  Google Scholar 

  38. 38

    Jin, R. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

    CAS  Article  Google Scholar 

  39. 39

    van Gorkum, R. & Bouwman, E. The oxidative drying of alkyd paint catalysed by metal complexes. Coordination Chem. Rev. 249, 1709–1728 (2005).

    CAS  Article  Google Scholar 

  40. 40

    Tang, L., Zhang, Y., Qian, Z. & Shen, X. The mechanism of Fe2+-initiated lipid peroxidation in liposomes: The dual function of ferrous ions, the roles of the pre-existing lipid peroxides and the lipid peroxyl radical. Biochem. J. 352, 27–36 (2000).

    CAS  Article  Google Scholar 

  41. 41

    Ahmed-Choudhury, J., Orsler, D. J. & Coleman, R. Hepatobiliary effects of tertiary-butylhydroperoxide (tBOOH) in isolated rat hepatocyte couplets. Toxicol. Appl. Pharmacol. 152, 270–275 (1998).

    CAS  Article  Google Scholar 

  42. 42

    Yin, H., Morrow, J. D. & Porter, N. A. Identification of a novel class of endoperoxides from arachidonate autoxidation. J. Biol. Chem. 279, 3766–3776 (2004).

    CAS  Article  Google Scholar 

  43. 43

    Esterbauer, H., Schauer, R. J. & Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11, 81–128 (1991).

    CAS  Article  Google Scholar 

  44. 44

    Nath, S., Ghosh, S. K., Panigrahi, S. & Pal, T. Aldehyde assisted wet chemical route to synthesize gold nanoparticles. Ind. J. Chem. A 43, 1147–1151 (2004).

    Google Scholar 

  45. 45

    Zhang, Z., Berg, A., Levanon, H., Fessenden, R. W. & Meisel, D. On the interactions of free radicals with gold nanoparticles. J. Am. Chem. Soc. 125, 7959–7963 (2003).

    CAS  Article  Google Scholar 

  46. 46

    Russel, A. D., Path, F. R. C. & Hugo, W. B. Antimicrobial activity and action of silver. Prog. Med. Chem. 31, 351–370 (1994).

    Article  Google Scholar 

  47. 47

    Zachariadis, P. C. et al. Synthesis, characterization and in vitro study of the cytostatic and antiviral activity of new polymeric silver(I) complexes with ribbon structures derived from the conjugated heterocyclic thioamide 2-mercapto-3,4,5,6-tetrahydropyrimidine. Eur. J. Inorg. Chem. 2004, 1420–1426 (2004).

    Article  Google Scholar 

  48. 48

    Sondi, I. & Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275, 177–182 (2004).

    CAS  Article  Google Scholar 

  49. 49

    Sudhir, K. Preparation, characterization, and surface modification of silver particles. Langmuir 14, 1021–1025 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

J. Haldar from MIT is acknowledged for discussions. A. Janakiraman, Department of Biology, CCNY is acknowledged for assisting with the microbial experiments. G.J. acknowledges the Science Interdepartmental Electron Microscope and Imaging Center at CCNY. P.M.A. acknowledges funding from NSEC at RPI.

Author information

Affiliations

Authors

Corresponding author

Correspondence to George John.

Supplementary information

Supplementary Information

Supplementary figures S1-S6 and supplementary table S1 (PDF 472 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, A., Vemula, P., Ajayan, P. et al. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nature Mater 7, 236–241 (2008). https://doi.org/10.1038/nmat2099

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing