Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films


Ferroelectrics are materials exhibiting spontaneous electric polarization due to dipoles formed by displacements of charged ions inside the crystal unit cell. Their exceptional properties are exploited in a variety of microelectronic applications. As ferroelectricity is strongly influenced by surfaces, interfaces and domain boundaries, there is great interest in exploring how the local atomic structure affects the electric properties. Here, using the negative spherical-aberration imaging technique in an aberration-corrected transmission electron microscope, we investigate the cation–oxygen dipoles near 180 domain walls in epitaxial PbZr0.2Ti0.8O3 thin films on the atomic scale. The width and dipole distortion across a transversal wall and a longitudinal wall are measured, and on this basis the local polarization is calculated. For the first time, a large difference in atomic details between charged and uncharged domain walls is reported.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Atomic-scale imaging of the electric dipoles formed by the relative displacements of the Zr/Ti cation columns and the O anion columns.
Figure 2: images of domain-wall segments of mixed type.
Figure 3: Image of an LDW segment.
Figure 4: Quantities of the structural and electric behaviour of the LDW as a function of the distance expressed in units of c from the central plane of the LDW shown in Fig. 3.


  1. 1

    Setter, N. & Waser, R. Electroceramic materials. Acta Mater. 48, 151–178 (2000).

    CAS  Article  Google Scholar 

  2. 2

    Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Roelofs, A. et al. Depolarizing-field-mediated 180 degrees switching in ferroelectric thin films with 90 degrees domains. Appl. Phys. Lett. 80, 1424 (2001).

    Article  Google Scholar 

  5. 5

    Jung, D. J., Dawber, M., Scott, J. F., Sinnamon, L. J. & Gregg, J. M. Switching dynamics in ferroelectric thin films: An experimental survey. Integrat. Ferroelectr. 48, 59–68 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Gysel, R., Stolichnov, I., Setter, N. & Pavius, M. Ferroelectric film switching via oblique domain growth observed by cross-sectional nanoscale imaging. Appl. Phys. Lett. 89, 082906 (2006).

    Article  Google Scholar 

  7. 7

    Stemmer, S., Streiffer, S. K., Ernst, F. & Rühle, M. Atomistic structure of 90 domain walls in ferroelectric PbTiO3 thin films. Phil. Mag. A 71, 713–724 (1995).

    CAS  Article  Google Scholar 

  8. 8

    Foster, C. M. et al. Single-crystal Pb(ZrxTi1−x)O3 thin films prepared by metalorganic chemical vapor deposition: Systematic compositional variation of electronic and optical properties. J. Appl. Phys. 81, 2349–2357 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Lee, K. S., Choi, J. H., Lee, J. Y. & Baik, S. Domain formation in epitaxial Pb(Zr,Ti)O3 thin films. J. Appl. Phys. 90, 4095–4102 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Streiffer, S. K. et al. Observation of nanoscale 180 stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett. 89, 67601–67604 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Foeth, M., Sfera, A., Stadelmann, P. & Buffat, P.-A. A comparison of HREM and weak beam transmission electron microscopy for the quantitative measurement of the thickness of ferroelectric domain walls. J. Electron Microsc. 48, 717–723 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Floquet, N. et al. Ferroelectric domain walls in BaTiO3: Fingerprints in XRPD diagrams and quantitative HRTEM image analysis. J. Physique III 7, 1105–1128 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Tanaka, M. & Honjo, G. Electron optical studies of barium titanate single crystal films. J. Phys. Soc. Japan 19, 954–970 (1964).

    CAS  Article  Google Scholar 

  15. 15

    Tanaka, M. Contrast of 180 domains of PbTiO3 in an electron microscopic image. Acta Cryst. A 31, 59–63 (1975).

    Article  Google Scholar 

  16. 16

    Gevers, R., Blank, H. & Amelinckx, S. Extension of the Howie–Whelan equations for electron diffraction to non-centro symmetrical crystals. Phys. Status Solidi 13, 449–465 (1966).

    CAS  Article  Google Scholar 

  17. 17

    Serneels, R. et al. Friedel’s law in electron diffraction as applied to the study of domain structures in non-centrosymmetrical crystals. Phys. Status Solidi B 58, 277–292 (1973).

    CAS  Article  Google Scholar 

  18. 18

    Wicks, B. J. & Lewis, M. H. Direct observations of ferroelectric domains in lithium niobate. Phys. Status Solidi 26, 571–576 (1968).

    CAS  Article  Google Scholar 

  19. 19

    Bursill, L. A. & Lin, P. J. Electron microscopic studies of ferroelectric crystals. Ferroelectric 70, 191–203 (1986).

    CAS  Article  Google Scholar 

  20. 20

    Sanchez, A. M., Ruterana, P., Benamara, M. & Strunk, H. P. Inversion domains and pinholes in GaN grown over Si(111). Appl. Phys. Lett. 82, 4471–4473 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Liu, Y. Z. et al. Inversion domain boundary in a ZnO film. Phil. Mag. Lett. 87, 687–693 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Daimon, Y. & Cho, Y. Cross-sectional observation of nanodomain dots formed in both congruent and stoichiometric LiTaO3 crystals. Appl. Phys. Lett. 90, 192906 (2007).

    Article  Google Scholar 

  23. 23

    Jia, C. L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Jia, C. L. & Urban, K. Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303, 2001–2004 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Haider, M. et al. Electron microscopy image enhanced. Nature 392, 768–769 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Jia, C. L., Lentzen, M. & Urban, K. High-resolution transmission electron microscopy using negative spherical aberration. Microsc. Microanal. 10, 174–184 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Vrejoiu, I. et al. Intrinsic ferroelectric properties of strained tetragonal PbZr0.2Ti0.8O3 obtained on layer-by-layer grown, defect-free single-crystalline films. Adv. Mater. 18, 1657–1661 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Wu, X. & Vanderbilt, D. Theory of hypothetical ferroelectric superlattices incorporating head-to-head and tail-to-tail 180 domain walls. Phys. Rev. B 73, 020103 (2006).

    Article  Google Scholar 

  29. 29

    Houben, L., Thust, A. & Urban, K. Atomic-precision determination of the reconstruction of a 90 tilt boundary in YBa2Cu3O7−δ by aberration corrected HRTEM. Ultramicroscopy 106, 200–214 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Williams, D. B. & Carter, C. B. Transmission Electron Microscopy (Plenum, New York and London, 1996).

    Google Scholar 

  31. 31

    Zhong, W., King-Smith, R. D. & Vanderbilt, D. Giant LO-TO splittings in perovskite ferroelectrics. Phys. Rev. Lett. 72, 3618–3621 (1994).

    CAS  Article  Google Scholar 

  32. 32

    Pöykkö, S. & Chadi, D. J. Ab initio study of 180 domain wall energy and structure in PbTiO3 . Appl. Phys. Lett. 75, 2830–2832 (1999).

    Article  Google Scholar 

  33. 33

    Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002).

    Article  Google Scholar 

  34. 34

    Catalan, G., Scott, J. F., Schilling, A. & Gregg, J. M. Wall thickness dependence of the scaling law for ferroic stripe domains. J. Phys. Condens. Matter 19, 02201 (2007).

    Google Scholar 

  35. 35

    Miller, R. C. & Weinreich, G. Mechanism for the sidewise motion of 180-degrees domain walls in barium titanate. Phys. Rev. 117, 1460–1466 (1960).

    CAS  Article  Google Scholar 

  36. 36

    Hayashi, M. Kinetics of domain wall motion in ferroelectric switching. 1. General formulation. J. Phys. Soc. Japan 33, 616 (1972).

    Article  Google Scholar 

  37. 37

    Gopalan, V., Dierolf, V. & Scrymgeour, D. A. Defect-domain wall interactions in trigonal ferroelectrics. Annu. Rev. Mater. Res. 37, 449–89 (2007).

    CAS  Article  Google Scholar 

  38. 38

    O’Keefe, M. A. & Kilaas, R. Advances in high-resolution image simulation. Scan Microsc. Suppl. 2, 225–244 (1988).

    Google Scholar 

Download references


The authors thank L. Houben for continuous support in using the software package for image mapping.

Author information



Corresponding author

Correspondence to Chun-Lin Jia.

Supplementary information

Supplementary Information

Supplementary information and figures S1-S5 (PDF 1218 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jia, C., Mi, S., Urban, K. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nature Mater 7, 57–61 (2008).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing