Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Charging and discharging of single conjugated-polymer nanoparticles

Abstract

Despite intense, long-term interest in organic semiconductors from both an applied and fundamental perspective, key aspects of the electronic properties of these materials remain poorly defined. A particularly challenging problem is the molecular nature of positive charge carriers, that is, holes or oxidized species in organics. Here, the unique ability of single-molecule spectroelectrochemistry (SMS-EC) to unravel complex electrochemical process in heterogeneous media is used to study the oxidation of nanoparticles of the conjugated polymer poly(9,9-dioctylfluorene-co-benzothiadiazole). A reversible hole-injection charging process has been observed that occurs primarily by initial injection of shallow (untrapped) holes, but soon after the injection, a small fraction of the holes becomes deeply trapped. Good agreement between experimental data and simulations strongly supports the presence of deep traps in the studied nanoparticles and highlights the ability of SMS-EC to study energetics and dynamics of deep traps in organic materials at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SMS-EC cell configuration and F8BT aggregates bulk electrochemistry.
Figure 2: Single-aggregate, subensemble and ensemble SMS-EC data.
Figure 3: Dependence of single-aggregate charging/discharging behaviour on potential sweep rate.
Figure 4: Dependence of E1/2 on potential sweep rate.
Figure 5: Pulsed bias experiments and charging/discharging simulations.
Figure 6: Solution-phase cyclic voltammograms of F8BT at different potential scan rates.

Similar content being viewed by others

References

  1. Campbell, A. J., Bradley, D. D. C. & Antoniadis, H. Dispersive electron transport in an electroluminescent polyfluorene copolymer measured by the current integration time-of-flight method. Appl. Phys. Lett. 79, 2133–2135 (2001).

    Article  CAS  Google Scholar 

  2. Chang, J. B. & Subramanian, V. Effect of active layer thickness on bias stress effect in pentacene thin-film transistors. Appl. Phys. Lett. 88, 233513 (2006).

    Article  Google Scholar 

  3. Gomes, H. L. et al. Bias-induced threshold voltages shifts in thin-film organic transistors. Appl. Phys. Lett. 84, 3184–3186 (2004).

    Article  CAS  Google Scholar 

  4. Lang, D. V., Chi, X., Siegrist, T., Sergent, A. M. & Ramirez, A. P. Bias-dependent generation and quenching of defects in pentacene. Phys. Rev. Lett. 93, 076601 (2004).

    Article  CAS  Google Scholar 

  5. Matters, M., De Leeuw, D. M., Herwig, P. T. & Brown, A. R. Bias-stress induced instability of organic thin film transistors. Synth. Met. 102, 998–999 (1999).

    Article  CAS  Google Scholar 

  6. Salleo, A. & Street, R. A. Light-induced bias stress reversal in polyfluorene thin-film transistors. J. Appl. Phys. 94, 471–479 (2003).

    Article  CAS  Google Scholar 

  7. Seeley, A. J. A. B., Friend, R. H., Kim, J.-S. & Burroughes, J. H. Trap-assisted hole injection and quantum efficiency enhancement in poly(9,9′ dioctylfluorene-alt-benzothiadiazole) polymer light-emitting diodes. J. Appl. Phys. 96, 7643–7649 (2004).

    Article  CAS  Google Scholar 

  8. Muller, E. M. & Marohn, J. A. Microscopic evidence for spatially inhomogeneous charge trapping in pentacene. Adv. Mater. 17, 1410–1414 (2005).

    Article  CAS  Google Scholar 

  9. Inzelt, G. Mechanism of charge transport in polymer-modified electrodes. Electroanal. Chem. 18, 89–241 (1994).

    CAS  Google Scholar 

  10. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001).

    Google Scholar 

  11. Grey, J. K., Kim, D. Y., Norris, B. C., Miller, W. L. & Barbara, P. F. Size dependent spectroscopic properties of conjugated polymer nanoparticles. J. Phys. Chem. B 110, 25568–25572 (2006).

    Article  CAS  Google Scholar 

  12. Szymanski, C. et al. Single molecule nanoparticles of the conjugated polymer MEH-PPV, preparation and characterization by near-field scanning optical microscopy. J. Phys. Chem. B 109, 8543–8546 (2005).

    Article  CAS  Google Scholar 

  13. Halls, J. J. M. et al. Photodiodes based on polyfluorene composites: Influence of morphology. Adv. Mater. 12, 498–502 (2000).

    Article  CAS  Google Scholar 

  14. Palacios, R. E., Fan, F.-R. F., Bard, A. J. & Barbara, P. F. Single-molecule spectroelectrochemistry (SMS-EC). J. Am. Chem. Soc. 128, 9028–9029 (2006).

    Article  CAS  Google Scholar 

  15. Barbara, P. F., Gesquiere, A. J., Park, S.-J. & Lee, Y. J. Single-molecule spectroscopy of conjugated polymers. Acc. Chem. Res. 38, 602–610 (2005).

    Article  CAS  Google Scholar 

  16. Grey, J. K. et al. Effect of temperature and chain length on the bimodal emission properties of single polyfluorene copolymer molecules. J. Phys. Chem. B 110, 18898–18903 (2006).

    Article  CAS  Google Scholar 

  17. Lammi, R. K. & Barbara, P. F. Influence of chain length on exciton migration to low-energy sites in single fluorene copolymers. Photochem. Photobio. Sci. 4, 95–99 (2005).

    Article  CAS  Google Scholar 

  18. Gesquiere, A. J., Park, S.-J. & Barbara, P. F. F-V/SMS: A new technique for studying the structure and dynamics of single molecules and nanoparticles. J. Phys. Chem. B 108, 10301–10308 (2004).

    Article  CAS  Google Scholar 

  19. Yu, J., Song, N. W., McNeill, J. D. & Barbara, P. F. Efficient exciton quenching by hole polarons in the conjugated polymer MEH-PPV. Isr. J. Chem. 44, 127–132 (2004).

    Article  CAS  Google Scholar 

  20. Arkhipov, V. I., Heremans, P., Emelianova, E. V. & Bassler, H. Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors. Phys. Rev. B 71, 045214 (2005).

    Article  Google Scholar 

  21. Davids, P. S., Campbell, I. H. & Smith, D. L. Device model for single carrier organic diodes. J. Appl. Phys. 82, 6319–6325 (1997).

    Article  CAS  Google Scholar 

  22. Rudolph, M. Reply to L.K. Bieniasz’s comments on my paper Digital simulations on unequally spaced grids. Part 1. Critical remarks on using the point method by discretisation on transformed grid [J. Electroanal. Chem. 529 (2002) 97]. J. Electroanal. Chem. 558, 171–176 (2003).

  23. Rudolph, M. Digital simulations on unequally spaced grids. Part 2. Using the box method by discretization on a transformed equally spaced grid. J. Electroanal. Chem. 543, 23–39 (2003).

    Article  CAS  Google Scholar 

  24. Rudolph, M. Digital simulations on unequally spaced grids. Part 3. Attaining exponential convergence for the discretisation error of the flux as a new strategy in digital simulations of electrochemical experiments. J. Electroanal. Chem. 571, 289–307 (2004).

    Article  CAS  Google Scholar 

  25. Rudolph, M. Attaining exponential convergence for the flux error with second- and fourth-order accurate finite-difference equations. Part 3. Application to electrochemical systems comprising second-order chemical reactions. J. Comput. Chem. 26, 1193–1204 (2005).

    Article  CAS  Google Scholar 

  26. Rudolph, M. Attaining exponential convergence for the flux error with second- and fourth-order accurate finite-difference equations. II. Application to systems comprising first-order chemical reactions. J. Comput. Chem. 26, 633–641 (2005).

    Article  CAS  Google Scholar 

  27. Rudolph, M. Attaining exponential convergence for the flux error with second-and fourth-order accurate finite-difference equations. I. Presentation of the basic concept and application to a pure diffusion system. J. Comput. Chem. 26, 619–632 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation, AFOSR, the Welch Foundation (P.F.B. and A.J.B.) and by the Basic Energy Sciences Program of the Department of Energy (P.F.B.).

Author information

Authors and Affiliations

Authors

Contributions

R.E.P. and F.-R.F.F. were primarily responsible for instrumental set-up, sample preparation and data acquisition. J.K.G. and J.S. were involved in the instrumental set-up for the controlled-environment SMS-EC experiments. R.E.P., F.-R.F.F., A.J.B. and P.F.B. were responsible for project planning, experiment design, data analysis and interpretation and manuscript preparation.

Corresponding author

Correspondence to Paul F. Barbara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1-S4 (PDF 246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palacios, R., Fan, FR., Grey, J. et al. Charging and discharging of single conjugated-polymer nanoparticles. Nature Mater 6, 680–685 (2007). https://doi.org/10.1038/nmat1959

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1959

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing