Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation and tuning of hypersonic bandgaps in colloidal crystals

Abstract

Composite materials with periodic variations of density and/or sound velocities, so-called phononic crystals, can exhibit bandgaps where propagation of acoustic waves is forbidden. Phononic crystals are the elastic analogue of the well-established photonic crystals and show potential for manipulating the flow of elastic energy. So far, the experimental realization of phononic crystals has been restricted to macroscopic systems with sonic or ultrasonic bandgaps in the sub-MHz frequency range. In this work, using high-resolution Brillouin spectroscopy we report the first observation of a hypersonic bandgap in face-centred-cubic colloidal crystals formed by self-assembly of polystyrene nanoparticles with subsequent fluid infiltration. Depending on the particle size and the sound velocity in the infiltrated fluid, the frequency and the width of the gap can be tuned. Promising technological applications of hypersonic crystals, ranging from tunable filters and heat management to acousto-optical devices, are anticipated.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Fabrication of dry and wet opal films.
Figure 2: Supported opal and scattering geometry.
Figure 3: Brillouin light scattering spectra of dry and wet opals and phononic gap.
Figure 4: Bandgap tuning by different infiltration.
Figure 5: Tuning the phononic gap with particle diameter.

References

  1. Sigalas, M. & Economou, E. N. Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141–143 (1993).

    Article  Google Scholar 

  2. Kushwaha, M. S., Halevi, P., Dobrzynski, L. & Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993).

    Article  Google Scholar 

  3. van Tiggelen, B. A. & Skipetrov, S. E. (eds) in Wave Scattering in Complex Media: From Theory to Applications (Kluwer Academic, Dordrecht, 2003).

  4. Martinez-Sala, R. et al. Sound attenuation by sculpture. Nature 378, 241 (1995).

    Article  Google Scholar 

  5. Montero de Espinosa, F. R., Jimenez, E. & Torres, M. Ultrasonic band gap in a periodic two-dimensional composite. Phys. Rev. Lett. 80, 1208–1211 (1998).

    Article  Google Scholar 

  6. Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    Article  Google Scholar 

  7. Vasseur, J. O. et al. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett. 86, 3012–3015 (2001).

    Article  Google Scholar 

  8. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  Google Scholar 

  9. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, New Jersey, 1995).

    Google Scholar 

  10. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 386, 143–149 (1997).

    Article  Google Scholar 

  11. Kent, A. J. et al. Acoustic phonon emission from a weakly coupled superlattice under vertical electron transport: observation of phonon resonance. Phys. Rev. Lett. 96, 215504 (2006).

    Article  Google Scholar 

  12. Gorishnyy, T., Maldovan, M., Ullal, C. & Thomas, E. L. Sound ideas. Phys. World 18, 24–29 (2005).

    Article  Google Scholar 

  13. Gorishnyy, T., Ullal, C. K., Maldovan, M., Fytas, G. & Thomas, E. L. Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005).

    Article  Google Scholar 

  14. Maldovan, M. & Thomas, E. L. Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl. Phys. Lett. 88, 251907 (2006).

    Article  Google Scholar 

  15. Jang, J. H., Ullal, C. K., Gorishnyy, T., Tsukruk, V. V. & Thomas, E. L. Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography. Nano Lett. 6, 740–743 (2006).

    Article  Google Scholar 

  16. Gu, Z., Fujishima, A. & Sato, O. Fabrication of high-quality opal films with controllable thickness. Chem. Mater. 14, 760–765 (2002).

    Article  Google Scholar 

  17. Fustin, C.-A., Glasser, G., Spiess, H. W. & Jonas, U. Parameters influencing the templated growth of colloidal crystals on chemically patterned surfaces. Langmuir 20, 9114–9123 (2004).

    Article  Google Scholar 

  18. Penciu, R. S., Kriegs, H., Petekidis, G., Fytas, G. & Economou, E. N. Phonons in colloidal crystals. J. Chem. Phys. 118, 5224–5240 (2003).

    Article  Google Scholar 

  19. Kriegs, H. et al. High frequency acoustic excitations in ordered diblock copolymer studied by inelastic x-ray scattering. J. Chem. Phys. 121, 2376–2380 (2004).

    Article  Google Scholar 

  20. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders College Publishing, New York, 1976).

    Google Scholar 

  21. Cheng, W. et al. The spectrum of vibration modes in soft opals. J. Chem. Phys. 123, 121104 (2005).

    Article  Google Scholar 

  22. Psarobas, I. E., Modinos, A., Sainidou, R. & Stefanou, N. Acoustic properties of colloidal crystals. Phys. Rev. B 65, 064307 (2002).

    Article  Google Scholar 

  23. Giugni, A. & Cunsolo, A. Structural relaxation in the dynamics of glycerol: A joint visible, UV and x-ray inelastic scattering study. J. Phys. Condens. Matter 18, 889–902 (2006).

    Article  Google Scholar 

  24. Gaunaurd, G. C. & Wertman, W. Comparison of effective medium theories for inhomogeneous continua. J. Acoust. Soc. Am. 85, 541–554 (1989).

    Article  Google Scholar 

  25. Lu, Y. et al. Optical properties of an ionic-type phononic crystal. Science 284, 1822–1824 (1999).

    Article  Google Scholar 

  26. Dhar, L., Rogers, J. A., Nelson, K. A. & Trusell, F. Moduli determination in polyimide film bilayer systems: prospects for depth profiling using impulsive stimulated thermal scattering. J. Appl. Phys. 77, 4431–4444 (1995).

    Article  Google Scholar 

  27. Tanaka, H., Sonehara, T. & Takagi, S. A new phase-coherent light scattering method: First observation of complex Brillouin spectra. Phys. Rev. Lett. 79, 881–884 (1997).

    Article  Google Scholar 

  28. Jiang, P., Bertone, J. F., Hwang, S. K. & Colvin, V. L. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132–2140 (1999).

    Article  Google Scholar 

  29. Fustin, C.-A., Glasser, G., Spiess, H. W. & Jonas, U. Site-selective growth of colloid crystals with photonic properties on chemically patterned surface. Adv. Mater. 15, 1025–1028 (2003).

    Article  Google Scholar 

  30. Asher, S. A., Weissman, J. M., Tikhonov, A., Coalson, R. D. & Kesavamoorthy, R. Diffraction in crystalline colloidal-array photonic crystals. Phys. Rev. E 69, 066619 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

Partial support by the EU through the Network of Excellence ‘SoftComp’ is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Fytas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheng, W., Wang, J., Jonas, U. et al. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nature Mater 5, 830–836 (2006). https://doi.org/10.1038/nmat1727

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1727

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing