Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors

Abstract

Future spintronics technologies based on diluted magnetic semiconductors (DMSs) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. Discoveries of room-temperature ferromagnetism in wide-bandgap DMSs hold great promise, but this ferromagnetism remains poorly understood. Here we demonstrate a close link between the electronic structures and polarity-dependent high-TC ferromagnetism of TM2+:ZnO DMSs, where TM2+ denotes 3d transition metal ions. Trends in ferromagnetism across the 3d series of TM2+:ZnO DMSs predicted from the energies of donor- and acceptor-type excited states reproduce experimental trends well. These results provide a unified basis for understanding both n- and p-type ferromagnetic oxide DMSs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 300 K magnetization data for 0.2% Mn2+:ZnO and 3.5% Co2+:ZnO films prepared by direct chemical synthesis with or without addition of nitrogen.
Figure 2: Electronic absorption, photocurrent IQE, and MCD spectroscopic data for Co2+:ZnO and Mn2+:ZnO.
Figure 3: Schematic summary of the spectroscopic analysis for Co2+- and Mn2+-doped ZnO DMSs.
Figure 4: Schematic summary of dopant–donor/acceptor resonance thermodynamics determined from spectroscopic analysis and the binding energies of common shallow donors (Zni) or acceptors (NO2−) in ZnO.
Figure 5: Results of LVBMCT and MLCBCT analysis for the series of TM2+:ZnO DMSs.

Similar content being viewed by others

References

  1. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    Article  Google Scholar 

  2. Sato, K. & Katayama-Yoshida, H. First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 17, 367–376 (2002).

    Article  Google Scholar 

  3. Pearton, S. J., Heo, W. H., Ivill, M., Norton, D. P. & Steiner, T. Dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 19, R59–R74 (2004).

    Article  Google Scholar 

  4. Look, D. C. & Claflin, B. P-type doping and devices based on ZnO. Phys. Status Solidi B 241, 624–630 (2004).

    Article  Google Scholar 

  5. Ghosh, S. et al. Room-temperature spin coherence in ZnO. Appl. Phys. Lett. 86, 232507 (2005).

    Article  Google Scholar 

  6. Kittilstved, K. R., Norberg, N. S. & Gamelin, D. R. Chemical manipulation of high-TC ferromagnetism in ZnO diluted magnetic semiconductors. Phys. Rev. Lett. 94, 147209 (2005).

    Article  Google Scholar 

  7. Lim, S.-W., Jeong, M.-C., Ham, M.-H. & Myoung, J.-M. Hole-mediated ferromagnetic properties in Zn1−xMnxO thin films. Jpn J. Appl. Phys. 43, L280–L283 (2004).

    Article  Google Scholar 

  8. Ivill, M., Pearton, S. J., Norton, D. P., Kelly, J. & Hebard, A. F. Magnetization dependence on electron density in epitaxial ZnO thin films codoped with Mn and Sn. J. Appl. Phys. 97, 053904 (2005).

    Article  Google Scholar 

  9. Norberg, N. S. et al. Synthesis of colloidal Mn2+:ZnO quantum dots and high-TC ferromagnetic nanocrystalline thin films. J. Am. Chem. Soc. 126, 9387–9398 (2004).

    Article  Google Scholar 

  10. Saeki, H., Tabata, H. & Kawai, T. Magnetic and electric properties of vanadium doped ZnO films. Solid State Commun. 120, 439–443 (2001).

    Article  Google Scholar 

  11. Schwartz, D. A. & Gamelin, D. R. Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor. Adv. Mater. 16, 2115–2119 (2004).

    Article  Google Scholar 

  12. Venkatesan, M., Fitzgerald, C. B., Lunney, J. G. & Coey, J. M. D. Anisotropic ferromagnetism in substituted zinc oxide. Phys. Rev. Lett. 93, 177206 (2004).

    Article  Google Scholar 

  13. Dietl, T. Dilute magnetic semiconductors: Functional ferromagnets. Nature Mater. 2, 646–648 (2003).

    Article  Google Scholar 

  14. Coey, J. M. D., Venkatesan, M. & Fitzgerald, C. B. Donor impurity band exchange in dilute ferromagnetic oxides. Nature Mater. 4, 173–179 (2005).

    Article  Google Scholar 

  15. Ueda, K., Tabata, H. & Kawai, T. Magnetic and electric properties of transition-metal-doped Zno films. Appl. Phys. Lett. 79, 988–990 (2001).

    Article  Google Scholar 

  16. Kittilstved, K. R. & Gamelin, D. R. Activation of high-TC ferromagnetism in Mn2+-doped ZnO using amines. J. Am. Chem. Soc. 127, 5292–5293 (2005).

    Article  Google Scholar 

  17. Petit, L., Schulthess, T. C., Svane, A., Temmerman, W. M. & Szotek, Z. Valencies of Mn impurities in ZnO. Mater. Res. Soc. Symp. Proc. E 825, G2.9.1-6 (2004).

    Google Scholar 

  18. Wang, Q., Sun, Q., Jena, P. & Kawazoe, Y. Carrier-mediated ferromagnetism in N codoped (Zn,Mn)O (1010) thin films. Phys. Rev. B 70, 052408 (2004).

    Article  Google Scholar 

  19. Bhattacharjee, A. K. Interactions between band electrons and transition-metal ions in diluted magnetic semiconductors. Phys. Rev. B 46, 5266–5273 (1992).

    Article  Google Scholar 

  20. Kobayashi, M. et al. Characterization of magnetic components in the diluted magnetic semiconductor Zn1−xCoxO by X-ray magnetic circular dichroism. Phys. Rev. B 72, 201201 (2005).

    Article  Google Scholar 

  21. Noras, J. M. & Allen, J. W. Photoionisation of nickel in ZnS and ZnSe. J. Phys. C 13, 3511–3521 (1980).

    Article  Google Scholar 

  22. Heitz, R., Hoffmann, A. & Broser, I. Magneto-optics of Ni-bound shallow states in ZnS and CdS. Phys. Rev. B 48, 8672–8682 (1993).

    Article  Google Scholar 

  23. Bishop, S. G., Robbins, D. J. & Dean, P. J. Evidence for exciton binding at Ni impurity sites in ZnSe. Solid State Commun. 33, 119–122 (1980).

    Article  Google Scholar 

  24. Müller, B., Roussos, G. & Schulz, H.-J. Photoluminescence and excitation spectroscopy of Ni2+ and Ni+ centres in ZnS Crystals. J. Cryst. Growth 72, 360–363 (1985).

    Article  Google Scholar 

  25. Juhl, A., Hoffmann, A., Bimberg, D. & Schulz, H.-J. Bound-exciton-related fine structure in charge transfer spectra of InP:Fe detected by calorimetric absorption spectroscopy. Appl. Phys. Lett. 50, 1292–1294 (1987).

    Article  Google Scholar 

  26. Liu, W., Salley, G. M. & Gamelin, D. R. Spectroscopy of photovoltaic and photoconductive nanocrystalline Co2+-doped ZnO electrodes. J. Phys. Chem. B 109, 14486–14495 (2005).

    Article  Google Scholar 

  27. Fleurov, V. N. & Kikoin, K. A. Amphoteric exciton trapping by 3d-impurities in A2B6 semiconductors. Solid State Commun. 42, 353–357 (1982).

    Article  Google Scholar 

  28. Mizokawa, T. & Fujimori, A. Configuration-interaction description of transition-metal impurities in II–VI semiconductors. Phys. Rev. B 48, 14150–14156 (1993).

    Article  Google Scholar 

  29. Blinowski, J., Kacman, P. & Dietl, T. Kinetic exchange vs. room temperature ferromagnetism in diluted magnetic semiconductors. Mater Res. Soc. Symp. Proc. 690, 109–114 (2002).

    Google Scholar 

  30. Fazzio, A., Caldas, M. J. & Zunger, A. Many-electron multiplet effects in the spectra of 3d impurities in heteropolar semiconductors. Phys. Rev. B 30, 3430–3455 (1984).

    Article  Google Scholar 

  31. Langer, J. M., Delerue, C., Lannoo, M. & Heinrich, H. Transition-metal impurities in semiconductors and heterojunction band lineups. Phys. Rev. B 38, 7723–7739 (1988).

    Article  Google Scholar 

  32. Weakliem, H. A. Optical spectra of Ni2+, Co2+, and Cu2+ in tetrahedral sites in crystals. J. Chem. Phys. 36, 2117–2140 (1962).

    Article  Google Scholar 

  33. Schwartz, D. A., Norberg, N. S., Nguyen, Q. P., Parker, J. M. & Gamelin, D. R. Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals. J. Am. Chem. Soc. 125, 13205–13218 (2003).

    Article  Google Scholar 

  34. Jørgensen, C. K. Electron transfer spectra. Prog. Inorg. Chem. 12, 101–158 (1970).

    Google Scholar 

  35. Lever, A. B. P. Inorganic Electronic Spectroscopy (Elsevier Science, Amsterdam, 1984).

    Google Scholar 

  36. Mizokawa, T., Nambu, T., Fujimori, A., Fukumura, T. & Kawasaki, M. Electronic structure of the oxide-diluted magnetic semiconductor Zn1−xMnxO . Phys. Rev. B 65, 085209 (2002).

    Article  Google Scholar 

  37. Wong, W. C., McClure, D. S., Basun, S. A. & Kokta, M. R. Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitons. Phys. Rev. B 51, 5682–5692 (1995).

    Article  Google Scholar 

  38. Look, D. C., Hemsky, J. W. & Sizelove, J. R. Residual native shallow donor in ZnO. Phys. Rev. Lett. 82, 2552–2555 (1999).

    Article  Google Scholar 

  39. Mulliken, R. S. Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J. Chem. Phys. 23, 1841–1846 (1955).

    Article  Google Scholar 

  40. Wolfsberg, M. & Helmholz, L. The spectra and electronic structure of the tetrahedral ions MnO4-, CrO4- -, and ClO4-. J. Chem. Phys. 20, 837–843 (1952).

    Article  Google Scholar 

  41. Shklovskii, B. I. Hopping conduction in lightly doped semiconductors. Sov. Phys. Semicond. 6, 1053–1075 (1973).

    Google Scholar 

  42. Beschoten, B. et al. Magnetic circular dichroism studies of carrier-induced ferromagnetism in (Ga1−xMnx)As . Phys. Rev. Lett. 83, 3073–3076 (1999).

    Article  Google Scholar 

  43. Bryan, J. D., Heald, S. M., Chambers, S. A. & Gamelin, D. R. Strong room-temperature ferromagnetism in Co2+-doped TiO2 made from colloidal nanocrystals. J. Am. Chem. Soc. 126, 11640–11647 (2004).

    Article  Google Scholar 

  44. Archer, P. I., Radovanovic, P. V., Heald, S. M. & Gamelin, D. R. Low-temperature activation and deactivation of high-TC ferromagnetism in a new diluted magnetic semiconductor: Ni2+-doped SnO2 . J. Am. Chem. Soc. 127, 14479–14487 (2005).

    Article  Google Scholar 

  45. Bryan, J. D., Santangelo, S. A., Keveren, S. C. & Gamelin, D. R. Activation of high-TC ferromagnetism in Co2+:TiO2 and Cr3+:TiO2 nanorods and nanocrystals by grain boundary defects. J. Am. Chem. Soc. 127, 15568–15574 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the NSF (PECASE DMR-0239325 and ECS-0224138), the Research Corporation (Cottrell Scholar), the Dreyfus Foundation (Teacher/Scholar), and the NSF-IGERT program at U.W. (to W.K.L.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Gamelin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary tables S1, S2 and S3; supplementary figures S1 and S2 (PDF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kittilstved, K., Liu, W. & Gamelin, D. Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors. Nature Mater 5, 291–297 (2006). https://doi.org/10.1038/nmat1616

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1616

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing