Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Domain switching in polycrystalline ferroelectric ceramics

Abstract

Ferroelectric ceramics are widely used as sensors and actuators for their electro-mechanical properties, and in electronic applications for their dielectric properties. Domain switching – the phenomenon wherein the ferroelectric material changes from one spontaneously polarized state to another under electrical or mechanical loads – is an important attribute of these materials. However, this is a complex collective process in commercially used polycrystalline ceramics that are agglomerations of a very large number of variously oriented grains. As the domains in one grain attempt to switch, they are constrained by the differently oriented neighbouring grains. Here we use a combined theoretical and experimental approach to establish a relation between crystallographic symmetry and the ability of a ferroelectric polycrystalline ceramic to switch. In particular, we show that equiaxed polycrystals of materials that are either tetragonal or rhombohedral cannot switch; yet polycrystals of materials where these two symmetries co-exist can in fact switch.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The multiscale behaviour of a ferroelectric ceramic.
Figure 2: The evolution under uniaxial compressive stress of the tetragonal domains and the associated strain for two different specimens of PZT, 40/60 (tetragonal-SP) and 49/51 (tetragonal-M), measured in situ using neutron diffraction.
Figure 3: The evolution under uniaxial compressive stress of the rhombodedral domains and the associated strain for two different specimens of PZT, 60/40 (rhombohedral-SP) and 49/51 (rhombohedral-M), measured in situ using neutron diffraction.

Similar content being viewed by others

References

  1. Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267-1324 (1998).

    Article  Google Scholar 

  2. Cross, L. E. in Ferroelectric Ceramics (eds Setter, N. & Colla, E. L.) 1-85 (Birkhauser, Berlin, 1993).

    Book  Google Scholar 

  3. Xu, Y. Ferroelectric Materials and Their Applications (North-Holland Elsevier Science, Amsterdam, 1991).

    Google Scholar 

  4. Jaffe, B., Cook, W. R. & Jaffe, H. Piezoelectric Ceramics (Academic, London, 1971).

    Google Scholar 

  5. Bhattacharya, K. & Ravichandran, G. Ferroelectric perovskites for electromechanical actuation. Acta Mater. 51, 5941-5960 (2003).

    Article  Google Scholar 

  6. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136-138 (1992).

    Article  Google Scholar 

  7. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651-1654 (1993).

    Article  Google Scholar 

  8. Resta, R. Ab initio simulation of properties of ferroelectric materials. Mol. Simul. Mater. 11, R69-R96 (2003).

    Article  Google Scholar 

  9. Waghmare, U. V. & Rabe, K. M. Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO3 . Phys. Rev. B 55, 6161-6173 (1997).

    Article  Google Scholar 

  10. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002).

    Article  Google Scholar 

  11. Stemmer, S., Streiffer, F. & Ruhle, M. Atomistic structure of 90 degree domain walls in ferroelectric PbTiO3 thin films. Phil. Mag. A 71, 713-724 (1995).

    Article  Google Scholar 

  12. Shilo, D., Ravichandran, G. & Bhattacharya, K. Investigation of twin-wall structure at the nanometre scale using atomic force microscopy. Nature Mater. 3, 453-457 (2004).

    Article  Google Scholar 

  13. Hu, H. L. & Chen, L. Q. Three-dimensional computer simulation of ferroelectric domain formation. J. Am. Ceram. Soc. 81, 492-500 (1998).

    Article  Google Scholar 

  14. Ahluwalia, R. & Cao, W. W. Influence of dipolar defects on switching behavior in ferroelectrics. Phys. Rev. B 63, 012103 (2001).

    Article  Google Scholar 

  15. Zhang, W. & Bhattacharya, K. A computation model of ferroelectric domains. Part I. Model formulation and domain switching and Part II. Grain boundaries and defect pinning. Acta Mater. 53, 185-209 (2005).

    Article  Google Scholar 

  16. Noheda, D. E. et al. A monoclinic ferroelectric phase in Pb(Zr1−xTix)O3 . Appl. Phys. Lett. 74, 2059-2061 (1999).

    Article  Google Scholar 

  17. Berlincourt, D. A. & Krueger, H. A. Domain processes in lead titanate zirconate and barium titanate ceramics. J. Appl. Phys. 30, 1804-1810 (1959).

    Article  Google Scholar 

  18. Jaffe, B., Roth, R. S. & Marzullo, S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 25, 809-810 (1953).

    Article  Google Scholar 

  19. Berlincourt, D. A., Cmolik, C. & Jaffee, H. Piezoelectric properties of polycrystalline lead titanate zirconate compositions. Proc. Inst. Radio Eng. 48, 220-229 (1960).

    Google Scholar 

  20. Isupov, V. A. Properties of Pb(Ti,Zr)O3 piezoelectric cermaics and nature of their orientational dielectric polarization. Sov. Phys. Solid State 10, 989-991 (1968).

    Google Scholar 

  21. Taylor, G. I. Plastic strain in metals. J. Inst. Metals 62, 307-324 (1938).

    Google Scholar 

  22. Bhattacharya, K. & Kohn, R. V. Texture, symmetry and reoverable strains of shape-memory polycrystals. Acta Mater. 44, 529-542 (1996).

    Article  Google Scholar 

  23. Tickle, R., James, R. D., Shield, T., Wittig, M. & Kokorin, V. V. Ferromagnetic shape memory in the NiMnGa system. IEEE Trans. Magn. 35, 4301-4310 (1999).

    Article  Google Scholar 

  24. Shu, Y. C. & Bhattacharya, K. Domain patterns and macroscopic properties of ferroelectric materials. Phil. Mag. B 81, 2021-2054 (2001).

    Article  Google Scholar 

  25. DeSimone, A. & James, R. D. A constrained theory of magnetoelasticity. J. Mech. Phys. Solids 50, 283-320 (2002).

    Article  Google Scholar 

  26. Ball, J. M. & James, R. D. Fine phase mixture as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13-52 (1987).

    Article  Google Scholar 

  27. Li, J. Y. & Liu, D. On ferroelectric crystals with engineered domain configurations. J. Mech. Phys. Solids 52, 1719-1742 (2004).

    Article  Google Scholar 

  28. Jona, F. & Shirane, G. Ferroelectric Crystals (Dover, New York, 1993).

    Google Scholar 

  29. Viehland, D. & Powers, J. Effect of uniaxial stress on the electromechanical properties of 0.7Pb(Mg1/2Nb2/3)O3-0.3PbTiO3 crystals and ceramics. J. Appl. Phys. 89, 1820-1825 (2001).

    Article  Google Scholar 

  30. Park, S. E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804-1811 (1997).

    Article  Google Scholar 

  31. Rogan, R. C., Ustundag, E., Clausen, B. & Daymond, M. R. Texture and strain analysis of the ferroelastic behavior of Pb(Zr,Ti)O3 by in situ neutron diffraction. J. Appl. Phys. 93, 4104-4111 (2003).

    Article  Google Scholar 

  32. Rogan, R. C. Investigation of the Multiscale Constitutive Behavior of Ferroelectric Materials Using Advanced Diffraction Techniques. Thesis, California Inst. Technology (2004).

  33. Larson, A. C. & Von Dreele, R. B. GSAS: General Structure Analysis System. Report No. LAUR 86-748 (Los Alamos National Laboratory, 1986).

    Google Scholar 

Download references

Acknowledgements

The authors thank M. Daymond, E. Oliver and J. Santisteban for their assistance with the experiments, a referee for suggesting the consistency check using the spontaneous polarization of PZT ceramics, and gratefully acknowledge the financial support of the US Army Research Office through DAAD 19-01-1-0517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bhattacharya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information S1 (PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Rogan, R., Üstündag, E. et al. Domain switching in polycrystalline ferroelectric ceramics. Nature Mater 4, 776–781 (2005). https://doi.org/10.1038/nmat1485

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1485

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing