Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thin films of hard cubic Zr3N4 stabilized by stress

Abstract

Hard, refractory thin films consisting of group IVB element mono-nitrides deposited using various chemical and physical vapour-deposition techniques are widely used in wear-resistant applications. As the demand for performance exceeds the capabilities of existing materials, new materials with superior properties must be developed. Here we report the realization and characterization of hard cubic Zr3N4 (c-Zr3N4) thin films. The films, deposited using a novel but industrially viable modified filtered cathodic arc (FCA) method, undergo a phase transformation from orthorhombic to cubic above a critical stress level of 9 GPa as determined by X-ray diffraction and Raman spectroscopy. The c-Zr3N4 films are significantly harder (36 GPa) than both the orthorhombic Zr3N4 (o-Zr3N4) and ZrN films (27 GPa). The ability to deposit this material directly onto components as a thin film will allow its use in wear- and oxidation-resistant applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mass spectrum and ion-energy distribution (inset) of Zr-N plasma produced by the modified filtered cathodic arc.
Figure 2: Crystal structures, XRD, TEM, Raman and UV-VIS spectroscopy data for various Zr-N thin films investigated in this study.
Figure 3: Variation of hardness and stress versus ion energy and the dependence of hardness on the stress.
Figure 4: Milling test results from uncoated, TiN and c-Zr3N4-coated three flute end mills with a diameter of 8 mm.

Similar content being viewed by others

References

  1. Johansson, B. O., Sundgren, J. E., Greene, J. E., Rockett, A. & Barnett, S. A. Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering. J. Vac. Sci. Technol. A 3, 303–307 (1985).

    Article  CAS  Google Scholar 

  2. Martin, P. J. et al. Characteristics of titanium arc evaporation processes. Thin Solid Films 153, 91–102 (1987).

    Article  CAS  Google Scholar 

  3. Sanders, D. M., Boercker, D. B. & Falabella, S. Coating technology based on the vacuum arc – a review. IEEE T. Plasma Sci. 18, 883–894 (1990).

    Article  CAS  Google Scholar 

  4. Schwarz, K., Williams, R. A., Cuomo, J. J., Harper, J. H. E. & Hentzell, H. T. G. Zirconium nitride – a new material for Josephson junctions. Phys. Rev. B 32, 8312–8316 (1985).

    Article  CAS  Google Scholar 

  5. Johansson, B. O., Hentzell, H. T. G., Harper, J. M. E. & Cuomo, J. J. Higher nitrides of hafnium, zirconium and titanium synthesized by dual ion beam deposition. J. Mater. Res. 1, 442–451 (1986).

    Article  CAS  Google Scholar 

  6. Salmenoja, K., Korhonen, A. S., Erola, E. & Molarius, J. M. Stability of nitrogen rich titanium nitride and zirconium nitride films. Appl. Phys. Lett. 49, 505–506 (1986).

    Article  CAS  Google Scholar 

  7. Prieto, P., Galan, L. & Sanz, J. M. Electronic structure of insulating zirconium nitride. Phys. Rev. B 47, 1613–1615 (1993).

    Article  CAS  Google Scholar 

  8. Prieto, P. et al. Electronic structure of insulating Zr3N4 studied by resonant photoemission. Phys. Rev. B 51, 17984–17986 (1995).

    Article  CAS  Google Scholar 

  9. Lerch, M., Fuglein, E. & Wrba, J. Synthesis, crystal structure and high temperature behavior of Zr3N4 . Z. Anorg. Allg. Chem. 622, 367–372 (1996).

    Article  CAS  Google Scholar 

  10. Wang, L., Yin, M. & Zhu, Y. Study of interface diffusion between Zr3N4 and stainless steel. Surf. Interface Anal. 35, 814–817 (2003).

    Article  CAS  Google Scholar 

  11. Becker, J. S., Kim, E. & Gordon, R. G. Atomic layer deposition of insulating hafnium and zirconium nitrides. Chem. Mater. 16, 349–3501 (2004).

    Article  Google Scholar 

  12. Zerr, A., Miehe, G. & Riedel, R. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nature Mater. 2, 185–189 (2003).

    Article  CAS  Google Scholar 

  13. Zerr, A. et al. Synthesis of cubic silicone nitride. Nature 400, 340–342 (1999).

    Article  CAS  Google Scholar 

  14. Sekine, T., Hongliang, H., Kobayashi, T., Zhang, M. & Fangfang, X. Shock induced transformation of β-Si3N4 to a high pressure cubic-spinel phase. Appl. Phys. Lett. 76, 370–3708 (2000).

    Article  Google Scholar 

  15. Leinenweber, K. et al. Synthesis and structure refinement of the spinel γ-Ge3N4 . Chem. Eur. J. 5, 3076–3078 (1999).

    Article  CAS  Google Scholar 

  16. Kroll, P. Hafnium nitride with thorium phosphide structure: physical properties and an assessment of the Hf-N, Zr-N, and Ti-N phase diagrams at high pressures and temperatures. Phys. Rev. Lett. 90, 125501 (2003).

    Article  Google Scholar 

  17. Dong, J. J., Deslippe, J., Sankey, O. F., Soignard, E. & McMillan, P. F. Theoretical study of the ternary spinel nitride system Si3N4-Ge3N4 . Phys. Rev. B 67, 094104 (2003).

    Article  Google Scholar 

  18. Ching, W.-Y., Xu, Y. N. & Ouyang, L. Electronic and dielectric properties of insulating Zr3N4 . Phys. Rev. B 66, 235106 (2002).

    Article  Google Scholar 

  19. Mattesini, M., Ahuja, R. & Johansson, B. Cubic Hf3N4 and Zr3N4: a class of hard materials. Phys. Rev. B 68, 184108 (2003).

    Article  Google Scholar 

  20. Aksenov, I. I. et al. Influence of electron magnetization of vacuum arc plasma on reaction kinetics in the synthesis of nitride containing coatings. Zh. Tekh. Fiz. 51, 303–309 (1981).

    CAS  Google Scholar 

  21. Anders, A. Approaches to rid cathodic arc plasmas of macro- and nanoparticles: a review. Surf. Coat. Technol. 121, 319–330 (1999).

    Article  Google Scholar 

  22. Martin, P. J. & Bendavid, A. Review of the filtered vacuum arc process and materials deposition. Thin Solid Films 391, 1–15 (2001).

    Article  Google Scholar 

  23. Rogozin, A. F. & Fontana, R. P. Reactive gas-controlled arc process. IEEE Trans. Plasma Sci. 25, 680–684 (1997).

    Article  CAS  Google Scholar 

  24. Boxman, R. L., Goldsmith, S., Brosh, N., Shalev, S. & Yaloz, H. Method and apparatus for surface-treating workpieces. US Patent 4,645,895 (1987).

  25. Demidenko, I. I., Lomino, N. S., Ovcharenko, V. D., Padalka, V. G. & Polyakova, G. N. Ionization mechanism of reaction gas in vacuum-arc discharges. 54, Zh. Tekh. Fiz. 1534–1537 (1984).

    CAS  Google Scholar 

  26. Aksenov, I. I. et al. Influence of electron magnetization of vacuum-arc plasma on reaction kinetics in the synthesis of nitride containing coats. 17, Zh. Tekh. Fiz. 200–202 (1983).

    Google Scholar 

  27. Amaratunga, G. A. J. et al. Hard elastic carbon thin films from linking of carbon nanoparticles. Nature 383, 321–323 (1996).

    Article  CAS  Google Scholar 

  28. Chhowalla, M. & Amaratunga, G. A. J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164–167 (2000).

    Article  CAS  Google Scholar 

  29. Chhowalla, M. Ion energy and charge state distributions in zirconium nitride arc plasma. Appl. Phys. Lett. 83, 1542–1544 (2003).

    Article  CAS  Google Scholar 

  30. Wu, D., Zhang, Z., Fu, W., Fan, X. & Guo, H. Structure, electrical and chemical properties of zirconium nitride films deposited by dc reactive magnetron sputtering. Appl. Phys. A 64, 593–598 (1997).

    Article  CAS  Google Scholar 

  31. Chen, X. J. et al. Pressure-induced phonon frequency shifts in transition-metal nitrides. Phys. Rev. B 70, 014501 (2004).

    Article  Google Scholar 

  32. McKenzie, D. R., Muller, D. & Pailthorpe, B. A. Compressive stress induced formation of thin film tetrahedral amorphous carbon, Phys. Rev. Lett. 67, 773–776 (1991).

    Article  CAS  Google Scholar 

  33. Chhowalla, M. et al. Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films. J. Appl. Phys. 81, 139–145 (1997).

    Article  CAS  Google Scholar 

  34. McKenzie, D. R. Generation and applications of compressive stress induced by low energy ion bombardment. J. Vac. Sci. Technol. B 11, 1928–1935 (1993).

    Article  CAS  Google Scholar 

  35. Kroll, P. Assessment of the Hf-N, Zr-N and Ti-N phase diagrams at high pressures and temperatures: balancing between MN and M3N4 (M = Hf, Zr, Ti). J. Phys. Condens. Matter 16, S1235–S1244 (2004).

    Article  CAS  Google Scholar 

  36. Robertson, J. Deposition mechanisms for promoting sp3 bonding in diamond-like carbon. Diam. Relat. Mater. 2, 984–989 (1993).

    Article  CAS  Google Scholar 

  37. Chhowalla, M. Thick, well-adhered, highly stressed tetrahedral amorphous carbon. Diam. Relat. Mater. 10, 1011–1016 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Rob Aharonov of Ion Bond (Madison Height, Michigan) for providing the modified FCA cathode assembly as well as advice and support for the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Chhowalla.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chhowalla, M., Unalan, H. Thin films of hard cubic Zr3N4 stabilized by stress. Nature Mater 4, 317–322 (2005). https://doi.org/10.1038/nmat1338

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing