Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atom inlays performed at room temperature using atomic force microscopy


The ability to manipulate single atoms and molecules laterally for creating artificial structures on surfaces1 is driving us closer to the ultimate limit of two-dimensional nanoengineering2,3. However, experiments involving this level of manipulation have been performed only at cryogenic temperatures. Scanning tunnelling microscopy has proved, so far, to be a unique tool with all the necessary capabilities for laterally pushing, pulling or sliding4 single atoms and molecules, and arranging them on a surface at will. Here we demonstrate, for the first time, that it is possible to perform well-controlled lateral manipulations of single atoms using near-contact atomic force microscopy5,6,7 even at room temperature. We report the creation of 'atom inlays', that is, artificial atomic patterns formed from a few embedded atoms in the plane of a surface. At room temperature, such atomic structures remain stable on the surface for relatively long periods of time.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Induced directional diffusion of the Sn adatoms in the Ge(111)-c(2×8) surface.
Figure 2: Sequence of topographic images illustrating the method for the controlled lateral manipulation of substitutional Sn adatoms in the Ge(111)-c(2×8) surface.
Figure 3: Final topographic NC-AFM image of the process of rearranging single atoms for the construction, at room temperature, of 'an atom inlay'.
Figure 4: Topographic NC-AFM images showing the lateral manipulation of a substitutional Sn adatom farther than its first neighbouring adatom positions.


  1. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  2. Heinrich, A. J., Lutz, C. P., Guptab, J. A. & Eigler, D. M. Molecule cascades. Science 298, 1381–1387 (2002).

    Article  CAS  Google Scholar 

  3. Nazin, G. V., Qiu, X. H. & Ho, W. Visualization and spectroscopy of a metal-molecule-metal bridge. Science 302, 77–81 (2003).

    Article  CAS  Google Scholar 

  4. Bartels, L., Meyer, G. & Rieder, K.-H. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett. 79, 697–700 (1997).

    Article  CAS  Google Scholar 

  5. Morita, S., Wiesendanger, R. & Meyer, E. (eds) Noncontact Atomic Force Microscopy (Springer, Berlin, 2002).

    Book  Google Scholar 

  6. García, R. & Pérez, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002).

    Article  Google Scholar 

  7. Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    Article  CAS  Google Scholar 

  8. Giessibl, F. J. Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy. Science 267, 68–71 (1995).

    Article  CAS  Google Scholar 

  9. Kitamura, S. & Iwatsuki, M. Observation of 7x7 reconstructed structure on the silicon (111) surface using ultrahigh vacuum noncontact atomic force microscopy. Jpn J. Appl. Phys. 34, L145–L148 (1995).

    Article  CAS  Google Scholar 

  10. Sugawara, Y., Ohta, M., Ueyama, H. & Morita, S. Defect motion on an InP(110) surface observed with noncontact atomic force microscopy. Science 270, 1646–1648 (1995).

    Article  CAS  Google Scholar 

  11. Loppacher, Ch. et al. Dynamic force microscopy of copper surfaces: Atomic resolution and distance dependence of tip-sample interaction and tunneling current. Phys. Rev. B 62, 16944–16949 (2000).

    Article  CAS  Google Scholar 

  12. Barth, C. & Reichling, M. Imaging the atomic arrangements on the high-temperature reconstructed α-Al2O3(0001) surface. Nature 414, 54–57 (2001).

    Article  CAS  Google Scholar 

  13. Lantz, M. A. et al. Quantitative measurement of short-range chemical bonding forces. Science 291, 2580 (2001).

    Article  CAS  Google Scholar 

  14. Oyabu, N., Custance, O., Yi, I., Sugawara, Y. & Morita, S. Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. Phys. Rev. Lett. 90, 176102 (2003).

    Article  Google Scholar 

  15. Pérez, R., Payne, M. C., Štich, I. & Terakura, K. Role of covalent tip-surface interactions in noncontact atomic force microscopy on reactive surfaces. Phys. Rev. Lett. 78, 678–681 (1997).

    Article  Google Scholar 

  16. Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).

    Article  Google Scholar 

  17. Becker, R. S., Swartzentruber, B. S., Vickers, J. S. & Klitsner, T. Dimer-adatom-stacking-fault (DAS) and non-DAS (111) semiconductor surfaces: A comparison of Ge(111)-c(2x8) to Si(111)-(2x2), -(5x5), -(7x7), and -(9x9) with scanning tunneling microscopy. Phys. Rev. B 39, 1633–1647 (1989).

    Article  CAS  Google Scholar 

  18. Takeuchi, N., Selloni, A. & Tosatti, E. Do we know the true structure of the Ge(111)-c(2x8)? Phys. Rev. Lett. 69, 648–651 (1992).

    Article  CAS  Google Scholar 

  19. Feenstra, R. M., Slavin, A. J., Held, G. A. & Luzt, M. A. Surface diffusion and phase transition on the Ge(111) surface studied by scanning tunneling microscopy. Phys. Rev. Lett. 66, 3257–3260 (1991).

    Article  CAS  Google Scholar 

  20. Kitamura, S., Sato, T. & Iwatsuki, M. Observation of surface reconstruction on silicon above 800 °C using the STM. Nature 351, 215–217 (1991).

    Article  CAS  Google Scholar 

  21. Ganz, E., Theiss, S. K., Hwang, I.-S. & Golovchenko, J. Direct measurement of diffusion by hot tunneling microscopy: activation energy, anisotropy, and long jumps. Phys. Rev. Lett. 68, 1567–1570 (1992).

    Article  CAS  Google Scholar 

  22. Hwang, I.-S. & Golovchenko, J. Observation of metastable structural excitations and concerted atomic motions on a crystal surface. Science 258, 1119–1122 (1992).

    Article  CAS  Google Scholar 

  23. Takeuchi, N., Selloni, A. & Tosatti, E. Adatom diffusion and disordering at the Ge(111)-c(2x8)-(1x1) surface transition. Phys. Rev. B 49, 10757–10760 (1994).

    Article  CAS  Google Scholar 

  24. Hwang, I.-S., Theiss, S. K. & Golovchenko, J. A. Mobile point defects and atomic basis for structural transformations of a crystal surface. Science 265, 490–496 (1994).

    Article  CAS  Google Scholar 

  25. Brihuega, I., Custance, O. & Gómez Rodríguz, J. M. Surface diffusion of single vacancies on Ge(111)-c(2x8) studied by variable temperature scanning tunneling microscopy. Phys. Rev. B. 70, 165410 (2004).

    Article  Google Scholar 

  26. Pizzagalli, L. & Baratoff. A. Theory of single atom manipulation with a scanning probe tip: Force signatures, constant-height, and constant-force scans. Phys. Rev. B, 68, 115427 (2003).

    Article  Google Scholar 

Download references


We thank Rubén Peréz for the careful revision of the manuscript. This material is based on work supported by the Handai Frontier Research Center, by the Active Nano-Characterization and Technology Project, and by a Grant in Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Óscar Custance.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sugimoto, Y., Abe, M., Hirayama, S. et al. Atom inlays performed at room temperature using atomic force microscopy. Nature Mater 4, 156–159 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing