Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quasicrystals as cluster aggregates

Abstract

Quasicrystals are solids that exhibit symmetries long thought forbidden in nature. Since their discovery in a rapidly solidified Al–Mn alloy in 1984, the central issue in the field has been to understand why they form. Are they energetically stable compounds or stabilized by entropy? In recent years, major strides have been made in determining atomic structure, largely by direct imaging using advanced electron microscopy. One system is now known to be energetically stabilized, and quasicrystals are therefore firmly established as a new physical state of matter. They represent a unique packing of atomic clusters some tens of atoms in size, with substantial localized fluctuations, referred to as phasons. Understanding phasons may in future allow their unique macroscopic properties to be tailored for useful materials applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Morphologies of faceted single grains of icosahedral quasicrystals.
Figure 2
Figure 3: Generation of 1D quasiperiodic order from a 2D square lattice.
Figure 4: Atomic configurations commonly found in Cd6X intermetallic compounds.
Figure 5: Atomíc-resolutíon ADF-STEM images of decagonal Al72Ni20Co8 with cluster models.

References

  1. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metalic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

    Article  CAS  Google Scholar 

  2. Dubost, B., Lang, J.-M., Tanaka, M., Sainfort, P. & Audier, M. Large AlCuLi single quasicrystals with triacontahedral solidification morphology. Nature 324, 48–50 (1986).

    Article  CAS  Google Scholar 

  3. Tsai, A. P., Inoue, A. & Masumoto, T. A stable quasicrystal in Al-Cu-Fe system. Jpn J. Appl. Phys. 26, L1505–L1507 (1987).

    Article  CAS  Google Scholar 

  4. Ohashi, W. & Spaepen, F. Stable Ga-Mg-Zn quasi-periodic crystals with pentagonal dodecahedral solidification morphology. Nature 330, 555–556 (1987).

    Article  CAS  Google Scholar 

  5. Tsai, A. P. in Physical Properties of Quasicrystals (ed. Stadnik, Z. M.) 5–50 (Springer, 1999).

    Book  Google Scholar 

  6. Stephens, P. W. & Goldman, A. I. Sharp diffraction maxima from an icosahedral glass. Phys. Rev. Lett. 56, 1168–1171 (1986); ibid 57, 2331 (1986).

    Article  CAS  Google Scholar 

  7. Pauling, L. Apparent icosahedral symmetry is due to directed multiple twinning of cubic crystals. Nature 317, 512–514 (1986); ibid So-called icosahedral and decagonal quasicrystals are twins of an 820-atom cubic crystal. Phys. Rev. Lett. 58, 365–368 (1987).

    Article  Google Scholar 

  8. Levine, D. & Steinhardt, P. J. Quasicrystals: A new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984).

    Article  CAS  Google Scholar 

  9. Desiraju, G. R. In search of clarity. Nature 423, 485 (2003).

    Article  CAS  Google Scholar 

  10. Bak, P. Icosahedral crystals: Where are the atoms? Phys. Rev. Lett. 56, 861–864 (1986).

    Article  CAS  Google Scholar 

  11. Janssen, T. Crystallography of quasi-crystals. Acta Crystallogr. A 42, 261–271 (1986).

    Article  Google Scholar 

  12. Yamamoto, A. Crystallography of quasiperiodic crystals. Acta Crystallogr. A 52, 509–560 (1996).

    Article  Google Scholar 

  13. Elser, V. & Henley, C. L. Crystal and quasicrystal structures in Al-Mn-Si alloys. Phys. Rev. Lett. 55, 2883–2886 (1985).

    Article  CAS  Google Scholar 

  14. Audier, M. et al. Structural relationships in intermetallic compounds of the Al-Li-(Cu, Mg, Zn) system. Phil. Mag. B 60, 437–466 (1989).

    Article  CAS  Google Scholar 

  15. Hiraga, K., Sugiyama, K. & Ohsuna, T. Atomic cluster arrangements in cubic approximant phases of icosahedral quasicrystals. Phil. Mag. A 78, 1051–1064 (1998).

    Article  CAS  Google Scholar 

  16. Janot, C. & de Boissieu, M. Quasicrystals as a hierarchy of clusters. Phys. Rev. Lett. 72, 1674–1677 (1994).

    Article  CAS  Google Scholar 

  17. Ishihara, K. N. & Yamamoto, A. Penrose patterns and related structures. I. Superstructure and generalized Penrose patterns. Acta Crystallogr. A 44, 508–516 (1988).

    Article  Google Scholar 

  18. Bendersky, L. Quasicrystal with one-dimensional translational symmetry and a tenfold rotation axis. Phys. Rev. Lett. 55, 1461–1463 (1985).

    Article  CAS  Google Scholar 

  19. Hiraga, K. in Advances in Imaging and Electron Physics (ed. Hawks P. W.) 37–98 (Academic, London, 1998).

    Google Scholar 

  20. Abe, E., Takakura, H. & Tsai, A. P. Ho arrangement in the Zn6Mg3Ho icosahedral quasicrystal studied by atomic-resolution Z-contrast STEM. J. Electron Microsc. 50, 187–195 (2001).

    CAS  Google Scholar 

  21. Beeli, C. & Horiuchi, S. The structure and its reconstruction in the decagonal Al70Mn17Pd13 quasicrystal. Phil. Mag. B 70, 215–240 (1994).

    Article  CAS  Google Scholar 

  22. Tsuda, K. et al. Structure of Al-Ni-Co decagonal quasicrystals. Phil. Mag. A 74, 697–708 (1996).

    Article  CAS  Google Scholar 

  23. Penrose, R. The role of aesthetics in pure and applied mathematical reserach. Bull. Inst. Math. Applic. 10, 266–271 (1974).

    Google Scholar 

  24. Burkov, S. Structure model of the Al-Cu-Co decagonal quasicrystal. Phys. Rev. Lett. 67, 614–617 (1991); ibid Modeling decagonal quasicrystals: random assembly of interpenetrating decagonal clusters. J. Phys. 2, 695–706 (1992).

    Article  CAS  Google Scholar 

  25. Henley, C. L. in Quasicrystals: The State of the Art (eds DiVincenzo, D. & Steinhardt, P. J.) 429–524 (World Scientific, Singapore, 1991).

    Book  Google Scholar 

  26. Joseph, D., Ritsch, S. & Beeli, C. Distinguishing quasiperiodic from random order in high-resolution TEM images. Phys. Rev. B 55, 8175–8183 (1997).

    Article  CAS  Google Scholar 

  27. Ritsch, S. et al. Highly perfect decagonal Al-Co-Ni quasicrystal. Phil. Mag. Lett. 74, 99–106 (1996).

    Article  CAS  Google Scholar 

  28. Abe, H. et al. Atomic short-range order in an Al72Ni20Co8 decagonal quasicrystal by anomalous X-ray scattering. Jpn J. Appl. Phys. 39, L1111–L1114 (2000).

    Article  CAS  Google Scholar 

  29. Pennycook, S. J. & Boatner, L. A. Chemically sensitive structure imaging with a scanning transmission electron microscope. Nature 336, 565–567 (1988).

    Article  CAS  Google Scholar 

  30. Pennycook, S. J. & Jesson, D. E. High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14–38 (1991); ibid High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, 938–941 (1990).

    Article  Google Scholar 

  31. Saitoh, K. et al. Structural study of an Al72Ni20Co8 decagonal quasicrystal using the high-angle annular dark-field method. Jpn J. Appl. Phys. 36, L1400–1402 (1997).

    Article  CAS  Google Scholar 

  32. Yan, Y., Pennycook, S. J. & Tsai, A. P. Direct imaging of local chemical disorder and columnar vacancies in ideal decagonal Al-Ni-Co quasicrystals. Phys. Rev. Lett. 81, 5145–5148 (1998).

    Article  CAS  Google Scholar 

  33. Steinhardt, P. J. et al. Experimental verification of the quasi-unit-cell model of quasicrystal structure. Nature 396, 55–57 (1998); correction Nature 399, 84 (1999).

    Article  CAS  Google Scholar 

  34. Gummelt, P. Construction of Penrose tilings by a single aperiodic protoset. Geometriae Dedicata 62, 1–17 (1996).

    Article  Google Scholar 

  35. Steinhardt, P. J. & Jeong, H.-C. A simpler approach to Penrose tiling with implications for quasicrystal formation. Nature 382, 433–435 (1996).

    Article  Google Scholar 

  36. Abe, E. et al. Quasi-unit cell model for an Al-Ni-Co ideal quasicrystal based on clusters with broken tenfold symmetry. Phys. Rev. Lett. 84, 4609–4612 (2000).

    Article  CAS  Google Scholar 

  37. Yan, Y. & Pennycook, S. J. Chemical ordering in Al72Ni20Co8 decagonal quasicrystals. Phys. Rev. Lett. 86, 1542–1545 (2001).

    Article  CAS  Google Scholar 

  38. Mihalkovic, M. et al. Total-energy-based prediction of a quasicrystal structure. Phys. Rev. B 65, 104205 (2002).

    Article  Google Scholar 

  39. Goedecke, T. et al. Isothermal sections of phase equilibria in the Al-AlCo-AlNi system. Z. Metallkd. 89, 687–698 (1998).

    CAS  Google Scholar 

  40. Hume-Rothery, W. Researches on the nature, properties, and conditions of formation of intermetallic compounds, with special reference to certain compounds of tin.-I.-V. J. Inst. Met. 36, 295–361 (1926).

    Google Scholar 

  41. Ritsch, S. et al. The existence regions of structural modifications in decagonal Al-Co-Ni. Phil. Mag. Lett. 78, 67–75 (1998).

    Article  CAS  Google Scholar 

  42. Hiraga, K. et al. Structural characteristics of Al-Co-Ni decagonal quasicrystals and crystalline approximants. Mater. Trans. 42, 2354–2367 (2001).

    Article  CAS  Google Scholar 

  43. Bak, P. Phenomenological theory of icosahedral incommensurate (“quasiperiodic”) order in Mn-Al alloys. Phys. Rev. Lett. 54, 1517–1519 (1985).

    Article  CAS  Google Scholar 

  44. Levine, D. et al. Elasticity and dislocations in pentagonal and icosahedral quasicrystals. Phys. Rev. Lett. 54, 1520–1523 (1985).

    Article  CAS  Google Scholar 

  45. Socolar, T., Lubensky, T. & Steinhardt, P. J. Phonons, phasons and dislocations in quasicrystals. Phys. Rev. B 34, 3345–3360 (1986).

    Article  CAS  Google Scholar 

  46. Urban, K. & Feuerbacher, M. Structurally complex alloy phases. J. Non-Cryst. Solids 334–335, 143–150 (2004).

    Article  Google Scholar 

  47. Lubensky, T. C. et al. Distortion and peak broadening in quasicrystal diffraction patterns. Phys. Rev. Lett. 57, 1440–1443 (1986).

    Article  CAS  Google Scholar 

  48. Jaric, M. V. & Nelson, D. R. Diffuse scattering from quasicrystals. Phys. Rev. B 37, 4458–4472 (1988).

    Article  CAS  Google Scholar 

  49. Ishii, Y. Phason softening and structural transitions in icosahedral quasicrystals. Phys. Rev. B 45, 5228–5239 (1992).

    Article  CAS  Google Scholar 

  50. de Boissieu, M. et al. Diffuse scattering and phason elasticity in the AlPdMn icosahedral phase. Phys. Rev. Lett. 75, 89–92 (1995).

    Article  CAS  Google Scholar 

  51. Coddens, G. & Steurer, W. Time-of–flight neutron-scattering study of phason hopping in decagonal Al-Co-Ni quasicrystals. Phys. Rev. B 60, 270–276 (1999).

    Article  CAS  Google Scholar 

  52. Francoual, S. et al. Dynamics of phason fluctuations in the i-AlPdMn quasicrystal. Phys. Rev. Lett. 91, 225501 (2003).

    Article  CAS  Google Scholar 

  53. Edagawa, K., Suzuki, K. & Takeuchi, S. High resolution transmission electron microscopy observation of thermally fluctuating phasons in decagonal Al-Cu-Co. Phys. Rev. Lett. 85, 1674–1677 (2000).

    Article  CAS  Google Scholar 

  54. Abe, E., Pennycook, S. J. & Tsai, A. P. Direct observation of a local thermal vibration anomaly in a quasicrystal. Nature 421, 347–350 (2003).

    Article  CAS  Google Scholar 

  55. Takakura, H., Yamamoto, A. & Tsai, A. P. The structure of decagonal Al72Ni20Co8 quasicrystal. Acta Crystallogr. A 57, 576–585 (2001).

    Article  CAS  Google Scholar 

  56. Abe, H. et al. Anomalous Debye-Waller factor associated with an order-disorder transformation in an Al72Ni20Co8 decagonal quasicrystal. J. Phys. Soc. Jpn 72, 1828–1831 (2003).

    Article  CAS  Google Scholar 

  57. Cervellino, A., Haibach, T. & Steurer, W. Structure solution of the basic decagonal Al-Co-Ni phase by the atomic surfaces modeling method. Acta Crystallogr. B 58, 8–33 (2002).

    Article  Google Scholar 

  58. Keppens, V. et al. Localized vibrational modes in metallic solids. Nature 395, 876–878 (1998).

    Article  CAS  Google Scholar 

  59. Cohn, J. L. et al. Glasslike heat conduction in high-mobility crystalline semiconductors. Phys. Rev. Lett. 82, 779–782 (1999).

    Article  CAS  Google Scholar 

  60. Mizutani, U., Takeuchi, T. & Sato, H. Atomic structure determination, electronic structure calculations and interpretation of electron transport properties of various 1/1–1/1–1/1 approximants. J. Phys. Condens. Matter 14, R767–R788 (2002).

    Article  CAS  Google Scholar 

  61. Macia, E. May quasicrystals be good thermoelectric materials? Appl. Phys. Lett. 77, 3045–3047 (2000).

    Article  CAS  Google Scholar 

  62. Gomez, C. P. & Lindin, S. Comparative structural study of the disordered MCd6 quasicrystal approximants. Phys. Rev. B 68, 024203 (2003).

    Article  Google Scholar 

  63. Fisher, I. R. et al. Growth of large-grain R – Mg – Zn quasicrystals from the ternary melt (R = Y, Er, Ho, Dy and Tb). Phil. Mag. B 77, 1601–1615 (1998).

    Article  CAS  Google Scholar 

  64. Tsai, A. P., Guo, J. Q., Abe, E., Takakura, H. & Sato, T. J. A stable binary quasicrystal. Nature 408, 537–538 (2000).

    Article  CAS  Google Scholar 

  65. Weickenmeier, A. & Kohl, H. Computation of absorptive form factors for high-energy electron diffraction. Acta Crystallogr. A 47, 590–597 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to A. P. Tsai, K. Saitoh, P. J. Steinhardt, H.-C. Jeong and H. Takakura for collaboration, on which the present article is based. We also thank T. J. Sato, M. Widom, C. L. Henley, M. Miharcovic, W. Steurer, M. de Boissieu, A. Yamamoto, N. Tanaka, K. Ishizuka and H. Inui for valuable comments and discussions. E.A. acknowledges support from the CREST-JST 'Fundamental properties of quasicrystals' project (1996-2001, Project leader: A. P. Tsai). Y.Y. and S.J.P. acknowledge support from the US department of Energy under contract numbers DE-AC36-99GO10337 and DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eiji Abe or Stephen J. Pennycook.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abe, E., Yan, Y. & Pennycook, S. Quasicrystals as cluster aggregates. Nature Mater 3, 759–767 (2004). https://doi.org/10.1038/nmat1244

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing