Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amorphous silicon exhibits a glass transition

Abstract

Amorphous silicon is a semiconductor with a lower density than the metallic silicon liquid. It is widely believed that the amorphous–liquid transition is a first-order melting transition. In contrast to this, recent computer simulations and the experimental observation of pressure-induced amorphization of nanoporous silicon have revived the idea of an underlying liquid–liquid phase transition implying the existence of a low-density liquid and its glass transition to the amorphous solid. Here we demonstrate that during irradiation with high-energy heavy ions amorphous silicon deforms plastically in the same way as conventional glasses. This behaviour provides experimental evidence for the existence of the low-density liquid. The glass transition temperature for a timescale of 10 picoseconds is estimated to be about 1,000 K. Our results support the idea of liquid polymorphism as a general phenomenon in tetrahedral networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ion hammering effect.
Figure 2: Plastic flow of amorphous silicon.
Figure 3: Quantification of the plastic deformation.
Figure 5: Amorphous silicon behaves like a glass.
Figure 4: Estimation of T*.

Similar content being viewed by others

References

  1. Liu, P. L., Yen, R., Bloembergen, N. & Hodgson, R. T. Picosecond laser-induced melting and resolidification morphology on Si. Appl. Phys. Lett. 34, 864–866 (1979).

    Article  CAS  Google Scholar 

  2. Matsumura, H. & Tachibana, H. Amorphous silicon produced by a new thermal chemical vapor deposition method using intermediate species SiF2 . Appl. Phys. Lett. 47, 833–835 (1985).

    Article  CAS  Google Scholar 

  3. Deb, S. K., Wilding, M., Somayazulu, M. & McMillan, P. F. Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon. Nature 414, 528–530 (2001).

    Article  CAS  Google Scholar 

  4. Glaser, E., Götz, G., Sobolev, N. & Wesch, W. Investigations of radiation damage production in ion implanted silicon. Phys. Status Solidi A 69, 603–614 (1982).

    Article  CAS  Google Scholar 

  5. Jakse, N. et al. Structural changes on supercooling liquid silicon. Appl. Phys. Lett. 83, 4734–4736 (2003).

    Article  CAS  Google Scholar 

  6. Baeri, P., Campisano, S. U., Grimaldi, M. G. & Rimini, E. Experimental investigation of the amorphous silicon melting temperature by fast heating processes. J. Appl. Phys. 53, 8730–8733 (1982).

    Article  CAS  Google Scholar 

  7. Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. & Jacobson, D. C. Heat of crystallization and melting-point of amorphous-silicon. Appl. Phys. Lett. 42, 698–700 (1983).

    Article  CAS  Google Scholar 

  8. Thompson, M. O. et al. Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation. Phys. Rev. Lett. 52, 2360–2363 (1984).

    Article  CAS  Google Scholar 

  9. Donovan, E. P., Spaepen, F., Poate, J. M. & Jacobson, D. C., Homogeneous and interfacial heat releases in amorphous silicon, Appl. Phys. Lett. 55, 1516–1518 (1989).

    Article  CAS  Google Scholar 

  10. Properties of Amorphous Silicon and its Alloys, EMIS Datareview Series no. 19 (ed. Searle, T.) ch. 8.8 (Short Run Press, Exeter, 1998).

  11. McMillan, P. F. Polyamorphic transformations in liquids and glasses. J. Mater. Chem. 14, 1506–1512 (2004).

    Article  CAS  Google Scholar 

  12. Aptekar, L. I. Phase transitions in noncrystalline germanium and silicon. Sov. Phys. Dokl. 24, 993–995 (1979).

    Google Scholar 

  13. Sastry, S. & Angell, C. A. Liquid-liquid phase transition in supercooled silicon. Nature Mater. 2, 739–743 (2003).

    Article  CAS  Google Scholar 

  14. Funamori, N. & Tsuji, K. Pressure-induced structural change of liquid silicon. Phys. Rev. Lett. 88, 255508–1–255508–4 (2002).

    Article  Google Scholar 

  15. Morishita, T. High density amorphous form and polyamorphic transformations of silicon. Phys. Rev. Lett. 93, 055503-1–055503-4 (2004).

    Article  Google Scholar 

  16. Keblinski, P., Bazant, M. Z., Dash, R. K. & Treacy, M. M. Thermodynamic behavior of a model covalent material described by the environment-dependent interatomic potential. Phys. Rev. B 66, 064104 (2002).

    Article  Google Scholar 

  17. Miranda, C. R. & Antonelli, A. Transitions between disordered phases in supercooled liquid silicon. J. Chem. Phys. 120, 11672–11677 (2004).

    Article  CAS  Google Scholar 

  18. Roorda, S., Doorn, S., Sinke, W. C., Scholte, P. M. L. O. & van Loenen, E. Calorimetric evidence for structural relaxation in amorphous silicon. Phys. Rev. Lett. 62, 1880–1883 (1989).

    Article  CAS  Google Scholar 

  19. Roorda, S. et al. Structural relaxation and defect annihilation in pure amorphous silicon. Phys. Rev. B 44, 3702–3725 (1991).

    Article  CAS  Google Scholar 

  20. Klaumünzer, S. & Schumacher, G. Dramatic growth of glassy Pd80Si20 during heavy-ion irradiation. Phys. Rev. Lett. 51, 1987–1990 (1983).

    Article  Google Scholar 

  21. Klaumünzer, S., Hou, M.-D. & Schumacher, G. Coulomb explosion in a metallic glass due to the passage of fast heavy ions? Phys. Rev. Lett. 57, 850–853 (1986).

    Article  Google Scholar 

  22. Klaumünzer, S. Plastic flow of amorphous materials induced by swift heavy ions. Mater. Sci. For. 97–99, 623–630 (1992).

    Google Scholar 

  23. Klaumünzer, S. in Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering (eds Lepinoux, J., Maziere, D., Pontikis, V. & Saada, G.) 441–450 (NATO Science Series Vol. 367, 2000).

    Book  Google Scholar 

  24. Hou, M. D., Klaumü nzer, S. & Schumacher, G. Dimensional changes of metallic glasses during bombardment with fast heavy ions. Phys. Rev. B 41, 1144–1157 (1990).

    Article  CAS  Google Scholar 

  25. Gutzmann, A. & Klaumünzer, S. Shape instability of amorphous materials during high-energy ion bombardment. Nucl. Instrum. Meth. B 127/128, 12–17 (1997).

    Article  CAS  Google Scholar 

  26. Chicoine, M., Roorda, S., Cliche, L. & Masut, R. A. Directional effects during ion implantation: lateral mass transport and anisotropic growth. Phys. Rev. B 56, 1551–1560 (1997).

    Article  CAS  Google Scholar 

  27. van Dillen, T. et al. Ion beam-induced anisotropic plastic deformation of silicon microstructures. Appl. Phys. Lett. 84, 3591–3593 (2004).

    Article  CAS  Google Scholar 

  28. Audouard, A. et al. High-energy ion irradiations of Fe85B15 amorphous alloy: evidence for electronic energy loss effect. Europhys. Lett. 3, 327–331 (1987).

    Article  CAS  Google Scholar 

  29. Audouard, A. Balanzat, E., Jousset, J. C., Lesueur, D. & Thomé, L. Atomic displacements and atomic motion induced by electronic excitation in heavy-ion-irradiated amorphous metallic alloy. J. Phys. Condens. Mater. 5, 995–1018 (1993).

    Article  CAS  Google Scholar 

  30. Sundaram, S. K. & Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nature Mater. 1, 217–224 (2002).

    Article  CAS  Google Scholar 

  31. Cavalleri, A. et al. Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy. J. Appl. Phys. 85, 3301–3309 (1999).

    Article  CAS  Google Scholar 

  32. Silvestrelli, P. L., Alavi, A., Parrinello, M. & Frenkel, D. Structural, dynamical, electronic, and bonding properties of laser-heated silicon: An ab initio molecular-dynamics study. Phys. Rev. B 56, 3806–3812 (1997).

    Article  CAS  Google Scholar 

  33. Landolt-Börnstein — Group III Condensed Mattter New Series Vol. 41E/17i (eds Madelung, O., Schulz, M. & Weiss, H.) 40–41 (Springer, Berlin, 2003).

  34. Sato, Y. et al. Viscosity of molten silicon and the factors affecting measurement. J. Cryst. Growth 249, 404–415 (2003).

    Article  CAS  Google Scholar 

  35. Hosokawa, S. et al. Sub-picosecond dynamics in liquid Si. J. Phys. Condens. Matter 15, L623–L629 (2003).

    Article  CAS  Google Scholar 

  36. Trinkaus, H. & Ryazanov, A. I. Viscoelastic model for the plastic flow of amorphous solids under energetic ion bombardment. Phys. Rev. Lett. 74, 5072–5075 (1995).

    Article  CAS  Google Scholar 

  37. Trinkaus, H. Local stress relaxation in thermal spikes as a possible cause for creep and macroscopic stress relaxation of amorphous solids under irradiation. J. Nucl. Mater. 223, 196–201 (1995).

    Article  CAS  Google Scholar 

  38. Trinkaus, H. Dynamics of viscoelastic flow in ion tracks: origin of plastic deformation of amorphous materials. Nucl. Instrum. Meth. B 146, 204–216 (1998).

    Article  CAS  Google Scholar 

  39. Trinkaus, H. Thermal spike model for irradiation creep of amorphous solids: comparison to experimental data for ion irradiated vitreous silica. J. Nucl. Mater. 246, 244–246 (1997).

    Article  CAS  Google Scholar 

  40. Keblinski, P., Wolf, D., Phillpot, S. R. & Gleiter, H. Continuous thermodynamic-equilibrium glass transition in high-energy grain boundaries? Phil. Mag. Lett. 76, 143–151 (1997).

    Article  CAS  Google Scholar 

  41. Aasland, S. & McMillan, P. F. Density-driven liquid–liquid phase separation in the system Al2O3–Y2O3 . Nature 369, 633–636 (1994).

    Article  CAS  Google Scholar 

  42. Ziegler, J. F., Biersack, J. P. & Littmark, U. in The Stopping and Range of Ions in Solids (Pergamon, New York, 2003).

    Google Scholar 

  43. Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957).

    Article  Google Scholar 

  44. Mura, T. Micromechanics of Defects in Solids 2nd edn (Martinus Nijhoff, 1987).

    Book  Google Scholar 

Download references

Acknowledgements

We thank H. Trinkaus, E. Wendler and A. Kamarou for discussions and U. Kaiser, H. Hobert and C. Voigt for their contributions to the analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Hedler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedler, A., Klaumünzer, S. & Wesch, W. Amorphous silicon exhibits a glass transition. Nature Mater 3, 804–809 (2004). https://doi.org/10.1038/nmat1241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing