Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Alloy catalysts designed from first principles

Abstract

The rational design of pure and alloy metal catalysts from fundamental principles has the potential to yield catalysts of greatly improved activity and selectivity. A promising area of research concerns the role that near-surface alloys (NSAs) can play in endowing surfaces with novel catalytic properties. NSAs are defined as alloys wherein a solute metal is present near the surface of a host metal in concentrations different from the bulk; here we use density functional theory calculations to introduce a new class of these alloys that can yield superior catalytic behaviour for hydrogen-related reactions. Some of these NSAs bind atomic hydrogen (H) as weakly as the noble metals (Cu, Au) while, at the same time, dissociating H2 much more easily. This unique set of properties may permit these alloys to serve as low-temperature, highly selective catalysts for pharmaceuticals production and as robust fuel-cell anodes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Stability of NSAs with respect to hydrogen-induced segregation.
Figure 2: Hydrogen binding energies (BEH) on various close-packed surfaces.
Figure 3: Correlation of the binding energy of atomic hydrogen, BEH, with properties of the clean NSA surfaces.
Figure 4: Transition-state (ETS) energy versus hydrogen binding energy for H2 dissociation on pure noble metals and NSAs.

References

  1. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).

    Google Scholar 

  2. Chorkendorff, I. & Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics (Wiley, Weinheim, 2003).

    Book  Google Scholar 

  3. Besenbacher, F. et al. Design of a surface alloy catalyst for steam reforming. Science 279, 1913–1915 (1998).

    CAS  Article  Google Scholar 

  4. Jacobsen, C. J. H. et al. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404–8405 (2001).

    CAS  Article  Google Scholar 

  5. Zambelli, T., Wintterlin, J., Trost, J. & Ertl, G. Identification of the “active sites” of a surface-catalyzed reaction. Science 273, 1688–1690 (1996).

    CAS  Article  Google Scholar 

  6. Xu, Z. et al. Size-dependent catalytic activity of supported metal-clusters. Nature 372, 346–348 (1994).

    CAS  Article  Google Scholar 

  7. Sinfelt, J. H. Bimetallic Catalysts: Discoveries, Concepts, and Applications (Wiley, New York, 1983).

    Google Scholar 

  8. Nielsen, L. P. et al. Initial growth of Au on Ni(110): surface alloying of immiscible metals. Phys. Rev. Lett. 71, 754–757 (1993).

    CAS  Article  Google Scholar 

  9. Schlapka, A., Lischka, M., Groß, A., Käsberger, U. & Jakob, P. Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(0001). Phys. Rev. Lett. 91, 016101 (2003).

    CAS  Article  Google Scholar 

  10. Hwu, H. H., Eng, J. Jr. & Chen, J. G. Ni/Pt(111) bimetallic surfaces: unique chemistry at monolayer Ni coverage. J. Am. Chem. Soc. 124, 702–709 (2002).

    CAS  Article  Google Scholar 

  11. Klötzer, B., Unterberger, W. & Hayek, K. Adsorption and hydrogenation of CO on Pd(111) and Rh(111) modified by subsurface vanadium. Surf. Sci. 532–535, 142–147 (2003).

    Article  Google Scholar 

  12. Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    CAS  Article  Google Scholar 

  13. Mitsui, T., Rose, M. K., Fomin, E., Ogletree, D. F. & Salmeron, M. Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies. Nature 422, 705–707 (2003).

    CAS  Article  Google Scholar 

  14. Studer, M., Blaser, H. & Exner, C. Enantioselective hydrogenation using heterogeneous modified catalysts: an update. Adv. Synth. Catal. 345, 45–65 (2003).

    CAS  Article  Google Scholar 

  15. Cortright, R. D., Davda, R. R. & Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964–967 (2002).

    CAS  Article  Google Scholar 

  16. Huber, G. W., Shabaker, J. W. & Dumesic, J. A. Raney Ni–Sn catalyst for H2 production from biomass-derived hydrocarbons. Science 300, 2075–2077 (2003).

    CAS  Article  Google Scholar 

  17. Deluga, G. A., Salge, J. R., Schmidt, L. D. & Verykios, X. E. Renewable hydrogen from ethanol by autothermal reforming. Science 303, 993–997 (2004).

    CAS  Article  Google Scholar 

  18. Turner, J. A. A realizable renewable energy future. Science 285, 687–689 (1999).

    CAS  Article  Google Scholar 

  19. Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    CAS  Article  Google Scholar 

  20. Greeley, J., Nørskov, J. K. & Mavrikakis, M. Electronic structure and catalysis on metal surfaces. Ann. Rev. Phys. Chem. 53, 319–348 (2002).

    CAS  Article  Google Scholar 

  21. Nørskov, J. K. et al. Universality in heterogeneous catalysis. J. Catal. 209, 275 (2002).

    Article  Google Scholar 

  22. Xu, Y., Ruban, A. V. & Mavrikakis, M. The adsorption and dissociation of O2 on Pt–Co and Pt–Fe alloys. J. Am. Chem. Soc. 126, 4717–4725 (2004).

    CAS  Article  Google Scholar 

  23. Michaelides, A. et al. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. J. Am. Chem. Soc. 125, 3704–3705 (2003).

    CAS  Article  Google Scholar 

  24. Ruban, A. V., Skriver, H. L. & Nørskov, J. K. Surface segregation energies in transition-metal alloys. Phys. Rev. B 59, 15990–16000 (1999).

    Article  Google Scholar 

  25. Hugenschmidt, M. B., Ruff, M., Hitzke, A. & Behm, R. J. Rotational epitaxy vs. missing row reconstruction: Au/Cu/Au(110). Surf. Sci. 388, L1100–L1106 (1997).

    CAS  Article  Google Scholar 

  26. Konvicka, C. et al. Surface and subsurface alloy formation of vanadium on Pd(111). Surf. Sci. 463, 199–210 (2000).

    CAS  Article  Google Scholar 

  27. Okada, M., Nakamura, M., Moritani, K. & Kasai, T. Dissociative adsorption of hydrogen on thin Au films grown on Ir(111). Surface Science 523, 218–230 (2003).

    CAS  Article  Google Scholar 

  28. Lundgren, E., Leonardelli, G., Schmid, M. & Varga, P. A misfit structure in the Co/Pt(111) system studied by scanning tunnelling microscopy and embedded atom method calculations. Surf. Sci. 498, 257–265 (2002).

    CAS  Article  Google Scholar 

  29. Lim, B. S., Rahtu, A. & Gordon, R. G. Atomic layer deposition of transition metals. Nature Mater. 2, 749–754 (2003).

    CAS  Article  Google Scholar 

  30. Finke, R. G. in Metal Nanoparticles: Synthesis, Characterization, and Applications (eds Feldheim, D. L. & Foss, C. A. Jr) 17–54 (Marcel Dekker, New York, 2002).

    Google Scholar 

  31. Debe, M. in Handbook of Fuel Cells-Fundamentals, Technology, and Applications (eds. Vielstich, W., Lamm, A. & Gasteiger, H. A.) 576–589 (Wiley, New York, 2003).

    Google Scholar 

  32. Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).

    Article  Google Scholar 

  33. Hammer, B. & Nørskov, J. K. in Chemisorption and Reactivity on Supported Clusters and Thin Films (eds Lambert, R. M. & Pacchioni, G.) 285–351 (Kluwer, Netherlands, 1997).

    Book  Google Scholar 

  34. Rodriguez, J. A. & Goodman, D. W. The nature of the metal–metal bond in bimetallic surfaces. Science 257, 897–903 (1992).

    CAS  Article  Google Scholar 

  35. Hammer, B. & Nørskov, J. K. Why gold is the noblest of all metals. Nature 376, 238–240 (1995).

    CAS  Article  Google Scholar 

  36. Hammer, B. & Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343, 211–220 (1995).

    CAS  Article  Google Scholar 

  37. Beutl, M. et al. There is a true precursor for hydrogen adsorption after all: the system H2/Pd(111) + subsurface V. Chem. Phys. Lett. 342, 473–478 (2001).

    CAS  Article  Google Scholar 

  38. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  39. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    CAS  Article  Google Scholar 

  40. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Article  Google Scholar 

  41. CRC Handbook of Chemistry and Physics (CRC, New York, 1996).

Download references

Acknowledgements

NSF supported this work through a pre-doctoral fellowship (J.G.) and a CAREER award (M.M.). Additional partial support was provided by a DOE-BES Catalysis Science Grant. Calculations were made on DOE-NERSC, NPACI and MSCF-PNNL resources. We thank A. Gokhale, M.-S. Han, A. Nilekar and Y. Xu for their help, and F. Besenbacher, J. Chen, J. Dumesic and J. Nørskov for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manos Mavrikakis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Table S1 (PDF 222 kb)

Supplementary Information, Table S2

Supplementary Information, Table S3

Supplementary Information, Table S4

Supplementary Information, Table S5

Supplementary Information, Note 1

Supplementary Information, Note 2

Supplementary Information, Note 3

Supplementary Information, Note 4

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Greeley, J., Mavrikakis, M. Alloy catalysts designed from first principles. Nature Mater 3, 810–815 (2004). https://doi.org/10.1038/nmat1223

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing