Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A first-order Mott transition in LixCoO2

Abstract

Despite many years of experimental searches for a first-order Mott transition in crystalline-doped semiconductors, none have been found. Extensive experimental work has characterized a first-order metal–insulator transition in LixCoO2, the classic material for rechargeable Li batteries, with a metallic state for x < 0.75 and insulating for x > 0.95. Using density functional theory calculations on large supercells, we identify the mechanism of this hereto anomalous metal–insulator transition as a Mott transition of impurities. Density functional theory demonstrates that for dilute Li-vacancy concentrations, the vacancy binds a hole and forms impurity states yielding a Mott insulator. The unique feature of LixCoO2 as compared with traditional doped semiconductors, such as Si:P, is the high mobility of the Li vacancies, which allows them to rearrange into two distinct phases at the temperature of the metal–insulator transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of the density-of-states for various realizations of the impurity band.
Figure 2: LDA DOS for various supercells.
Figure 3: The total charge-density difference of Li0.969CoO2–CoO2.
Figure 4: Total energy of LixCoO2.

Similar content being viewed by others

References

  1. Takada, K. et al. Superconductivity in two-dimensional CoO2 layers. Nature 422, 53–55 (2003).

    Article  CAS  Google Scholar 

  2. Terasaki, I., Sasago, Y. & Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, 12685–12687 (1997).

    Article  Google Scholar 

  3. Van der Ven, A., Aydinol, M.K., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2 . Phys. Rev. B 58, 2975–2987 (1998).

    Article  CAS  Google Scholar 

  4. Van der Ven, A., Aydinol, M.K. & Ceder, G. First-principles evidence for stage ordering in LixCoO2 . J. Electrochem. Soc. 145, 2149–2155 (1998).

    Article  CAS  Google Scholar 

  5. Carlier, D., Van der Ven, A., Delmas, C. & Ceder, G. First-principles investigation of phase stability in the O-2-LiCoO2 system. Chem. Mater. 15, 2651–2660 (2003).

    Article  CAS  Google Scholar 

  6. Chen, Z.H., Lu, Z.H. & Dahn, J.R. Staging phase transitions in LixCoO2 . J. Electrochem. Soc. 149, A1604–A1609 (2002).

    Article  CAS  Google Scholar 

  7. Gabrisch, H., Yazami, R. & Fultz, B. The character of dislocations in LiCoO2 . Electrochem. Solid State Lett. 5, A111–A114 (2002).

    Article  CAS  Google Scholar 

  8. Edwards, P.P., Rao, C.N.R. & Mott, N.F. Metal-insulator Transitions Revisited (Taylor & Francis, London, UK; Bristol, Pennsylvania, USA, 1995).

    Google Scholar 

  9. Edwards, P.P. & Rao, C.N.R. The Metallic and Nonmetallic States Of Matter (Taylor & Francis, London; Philadelphia, 1985).

    Google Scholar 

  10. Graetz, J. et al. Electronic structure of chemically-delithiated LiCoO2 studied by electron energy-loss spectrometry. J. Phys. Chem. B 106, 1286–1289 (2002).

    Article  CAS  Google Scholar 

  11. Reimers, J.N. & Dahn, J.R. Electrochemical and in situ X-ray-diffraction studies of lithium intercalation in LixCoO2 . J. Electrochem. Soc. 139, 2091–2097 (1992).

    Article  CAS  Google Scholar 

  12. Ohzuku, T. & Ueda, A. Solid-state redox reactions of LixCoO2 (R3macr;m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 141, 2972–2977 (1994).

    Article  CAS  Google Scholar 

  13. Shao-Horn, Y., Levasseur, S., Weill, F. & Delmas, C. Probing lithium and vacancy ordering in O3 layered LixCoO2 (x≈0.5). An electron diffraction study. J. Electrochem. Soc. 150, A366–A373 (2003).

    Article  CAS  Google Scholar 

  14. Amatucci, G.G., Tarascon, J.M. & Klein, L.C. CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996).

    Article  CAS  Google Scholar 

  15. Menetrier, M., Saadoune, I., Levasseur, S. & Delmas, C. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and Li-7 NMR study. J. Mater. Chem. 9, 1135–1140 (1999).

    Article  CAS  Google Scholar 

  16. Molenda, J., Stoklosa, A. & Bak, T. Modification in the electronic-structure of cobalt bronze LixCoO2 and the resulting electrochemical properties. Solid State Ionics 36, 53–58 (1989).

    Article  CAS  Google Scholar 

  17. Imanishi, N., Fujiyoshi, M., Takeda, Y., Yamamoto, O. & Tabuchi, M. Preparation and Li-7-NMR study of chemically delithiated Li1−xCoO2 (0 &lt; x &lt; 0.5). Solid State Ionics 118, 121–128 (1999).

    Article  CAS  Google Scholar 

  18. Anderson, P.W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958).

    Article  CAS  Google Scholar 

  19. Kittel, C. Introduction to Solid State Physics (Wiley, New York, 1996).

    Google Scholar 

  20. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  21. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  22. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  23. Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  24. Aydinol, M.K., Kohan, A.F., Ceder, G., Cho, K. & Joannopoulos, J. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56, 1354–1365 (1997).

    Article  CAS  Google Scholar 

  25. Wolverton, C. & Zunger, A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2 . Phys. Rev. Lett. 81, 606–609 (1998).

    Article  CAS  Google Scholar 

  26. Marianetti, C.A., Kotliar, G. & Ceder, G. Role of hybridization in NaxCoO2 and the effect of hydration. Phys. Rev. Lett. 92, 196405 (2004).

    Article  CAS  Google Scholar 

  27. Hettler, M.H., Mukherjee, M., Jarrell, M. & Krishnamurthy, H.R. Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems. Phys. Rev. B 61, 12739–12756 (2000).

    Article  CAS  Google Scholar 

  28. Biroli, G. & Kotliar, G. Cluster methods for strongly correlated electron systems. Phys. Rev. B 65 (2002).

  29. Biermann, S., Aryasetiawan, F. & Georges, A. First-principles approach to the electronic structure of strongly correlated systems: Combining the GW approximation and dynamical mean-field theory. Phys. Rev. Lett. 90 (2003).

  30. Sun, P. & Kotliar, G. Extended dynamical mean-field theory and GW method. Phys. Rev. B 66 (2002).

  31. Dobrosavljevic, V., Pastor, A.A. & Nikolic, B.K. Typical medium theory of Anderson localization: A local order parameter approach to strong-disorder effects. Europhys. Lett. 62, 76–82 (2003).

    Article  CAS  Google Scholar 

  32. Mott, N.F. On the transition to metallic conduction in semiconductors. Canad. J. Phys. 34, 1356 (1956).

    Article  CAS  Google Scholar 

  33. Mott, N.F. Metal-Insulator Transitions (Taylor & Francis; Barnes & Noble Books, London, New York, 1974).

    Google Scholar 

Download references

Acknowledgements

This research was supported with funding from the Department of Energy Basic Energy Science contract DE-F602-96ER45571, the National Science Foundation (NSF) Materials Research Science and Engineering Center program, and NSF contract DMR-0096462. We also gratefully acknowledge computing resources from the National Partnership for Advanced Computational Infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ceder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marianetti, C., Kotliar, G. & Ceder, G. A first-order Mott transition in LixCoO2. Nature Mater 3, 627–631 (2004). https://doi.org/10.1038/nmat1178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing