Article | Published:

Large anomalous Hall effect in a silicon-based magnetic semiconductor

Nature Materials volume 3, pages 255262 (2004) | Download Citation

Subjects

Abstract

Magnetic semiconductors are attracting great interest because of their potential use for spintronics, a new technology that merges electronics with the manipulation of conduction electron spins. (GaMn)As and (GaMn)N have recently emerged as the most popular materials for this new technology, and although their Curie temperatures are rising towards room temperature, these materials can only be fabricated in thin-film form, are heavily defective, and are not obviously compatible with Si. We show here that it is productive to consider transition metal monosilicides as potential alternatives. In particular, we report the discovery that the bulk metallic magnets derived from doping the narrow-gap insulator FeSi with Co share the very high anomalous Hall conductance of (GaMn)As, while displaying Curie temperatures as high as 53 K. Our work opens up a new arena for spintronics, involving a bulk material based only on transition metals and Si, which displays large magnetic-field effects on its electrical properties.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 68, 2664–2667 (1992).

  2. 2.

    et al. (GaMn)As: A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996).

  3. 3.

    , , & Transport properties and origin of ferromagnetism in (GaMn)As. Phys. Rev. B 57, R2037–R2040 (1998).

  4. 4.

    et al. Room temperature ferromagnetic properties of (GaMn)N. Appl. Phys. Lett. 79, 3473–3475 (2001).

  5. 5.

    et al. Unconventional charge gap formation in FeSi. Phys. Rev. Lett. 71, 1748–1751 (1993).

  6. 6.

    , , & Spin, charge, and bonding in transition metal mono-silicides. Physica B 244, 138–147 (1998).

  7. 7.

    et al. Magnetoresistance from quantum interference effects in ferromagnets. Nature 404, 581–584 (2000).

  8. 8.

    , & Long period helimagnetism in the cubic-B20 Fe1−xCoxSi and CoxMn1−xSi alloys. Solid State Commun. 47, 399–402 (1983).

  9. 9.

    , & Magnetic behavior of the monosilicides of 3d-transition elements. Mater. Res. Bull. 7, 1431–1441 (1972).

  10. 10.

    & Kondo Insulators. Comment Condens. Matter Phys. 16, 155–165 (1992).

  11. 11.

    , , , & Paramagnetic excited states of FeSi. Phys. Rev. 160, 476–482 (1967).

  12. 12.

    , , , & Metal-insulator transitions in Kondo insulator FeSi and classic semiconductors are similar. Phys. Rev. Lett. 78, 2831–2834 (1997); 78, 4309(E) (1997).

  13. 13.

    et al. Low temperature transport, optical, magnetic, and thermodynamic properties of Fe1−xCoxxSi. Phys. Rev. B 56, 1366–1375 (1997).

  14. 14.

    Spin Fluctuations in Itinerant Electron Magnetism (ed. by Fulde, P.) (Springer, Berlin, 1985).

  15. 15.

    et al. Heavy carriers and non-Drude optical conductivity in MnSi. Phys. Rev. B 67, 241101 (2003).

  16. 16.

    , & Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets. Nature 414, 427–430 (2001).

  17. 17.

    & Ferromagnetic Materials vol. 3 (ed. Wohlfarth, E. P.) (North-Holland, Amsterdam, 1982).

  18. 18.

    Contribution to the theory of the anomalous Hall effect in ferro- and antiferromagnetic materials. Phys. Rev. 160, 421–429 (1967).

  19. 19.

    & Band structure and semiconducting properties of FeSi. Phys. Rev. B 47, 13114–13119 (1993).

  20. 20.

    Extraordinary Hall-effect measurements on Ni, some Ni alloys, and ferrites. Phys. Rev. 123, 1273–1277 (1961).

  21. 21.

    Hall-effect of Ce intermetallic compounds. Z. Phys. B 64, 305–316 (1986).

  22. 22.

    , & Theory of the anomalous Hall constant of mixed-valence systems. Phys. Rev. Lett. 55, 414–417 (1985).

  23. 23.

    et al. Hall effect of the colossal magnetoresistance manganite La1−xCaxMnO3. Phys. Rev. B 57, 10248–10251 (1998).

  24. 24.

    et al. Half-metallic ferromagnets: II. Transport properties of NiMnSb and related inter-metallic compounds. J. Phys. Condens. Matter 1, 2351–2360 (1989).

  25. 25.

    et al. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6. Phys. Rev. B 61, 422–427 (2000).

  26. 26.

    , & Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207–208 (2002).

  27. 27.

    Theory of the Hall effect in ferromagnetic substances. Phys. Rev. 112, 739–751 (1958).

  28. 28.

    et al. Berry phase theory of the anomalous Hall effect: application to colossal magnetoresistance manganites. Phys. Rev. Lett. 83, 3737–3740 (1999).

  29. 29.

    & Universal relationship of the resistivity and specific—heat in heavy-Fermion compounds. Solid State Commun. 58, 507–509 (1986).

  30. 30.

    , , & Formation and properties of an impurity band in n-type GaAs. Fiz. Tver. Tela 7, 1315–1323 (1965).

  31. 31.

    & Critical behavior of the Hall conductivity at the Metal-Insulator Transition. Phys. Rev. Lett. 55, 522–524 (1985).

  32. 32.

    , , & Electrical properties of heavily doped silicon. J. Appl. Phys. 34, 3291–3294 (1963).

  33. 33.

    , & Metallic conductivity near the metal insulator transition in Cd1−xMnxTe. Phys. Rev. B 58, 9773–9782 (1998).

  34. 34.

    & Hall effect and transverse magnetoresistance in some ferromagnetic iron-chromium alloys. Phys. Rev. 152, 498–504 (1966).

  35. 35.

    Electrical conduction in ferromagnetic metals. Philips Res. Rep. 31, 287–410 (1976).

  36. 36.

    , & Hall effect in amorphous thin-film magnetic alloys. J. Appl. Phys. 48, 2965–2970 (1977).

  37. 37.

    , , & Large magnetic hall effect in ferromagnetic Fex Pt100−x thin films. J. Appl. Phys. 79, 6126–6128 (1996).

  38. 38.

    Hall effect in an amorphous ferromagnetic alloy. J. Appl. Phys. 40, 2175–2176 (1969).

  39. 39.

    & Resistivity of amorphous ferromagnetic FecAu1−c alloys: Anisotropy and field dependence. Phys. Rev. B 18, 326–337 (1978).

  40. 40.

    , & Observation of giant Hall effect in granular magnetic films. J. Appl. Phys. 79, 6140–6142 (1996).

  41. 41.

    , & Giant Hall effect in percolating ferromagnetic granular metal-insulator films. Appl. Phys. Lett. 67, 3497–3499 (1995).

  42. 42.

    , , , & Magnetic percolation and giant spontaneous Hall effect in La1−xCaxCoO3 (0.2 ≤ x ≤ 0.5). Phys. Rev. B 57, R14032–R14035 (1998).

  43. 43.

    , & Anomalous magnetotransport properties of R2Mo2O7 near the magnetic phase boundary. Phys. Rev. Lett. 84, 1998–2001 (2000).

  44. 44.

    & Magnetotransport phenomena in a metallic ferromagnet of the verge of a Mott transition: Sm2Mo2O7. Phys. Rev. B 60, 10280–10283 (1999).

  45. 45.

    et al. Charge dynamics in (LaSr)CuO4 - from underdoping to overdoping. J. Low Temp. Phys. 95, 23–31 (1994).

  46. 46.

    et al. Charge dynamics of Ce-based compounds: Connection between the mixed valent and Kondo-insulator states. Phys. Rev. B 53, R2948–R2951 (1996).

  47. 47.

    et al. Hall effect in heavy Fermion systems. J. Magn. Magn. Mater. 63–64, 338–340 (1987).

  48. 48.

    et al. Hall effect in heavy-Fermion systems: UPt3, UAl2, CeAl3, CeRu2Si2. Europhys. Lett. 1, 579–584 (1986).

  49. 49.

    et al. On the crystal field and Kondo effect in CeIn3. J. Magn. Magn. Mater. 47–48, 69–71 (1985).

  50. 50.

    et al. Influence of Y and La alloying on the anomalous Hall-effect of CeRu2Si2. J. Magn. Magn. Mater. 76–77, 267–268 (1988).

  51. 51.

    et al. in Valence Fluctuations in Solids (eds Falicov, L. M., Henke, W.& Maple, M. B.) 281–284 (North-Holland, Amsterdam, 1981).

  52. 52.

    et al. Hall effect in the heavy Fermion systems CeCu6 and UBe13. J. Magn. Magn. Mater. 54–57, 370–372 (1986).

Download references

Acknowledgements

We thank D. A. Browne and J. Y. Chan for discussions. J.F.D., Z.F. and G.A. acknowledge the support of the National Science Foundation under contract Nos DMR 0103892, DMR 0203214, and a Wolfson-Royal Society Research Merit Award and the Basic Technologies programme of the UK Research Councils, respectively.

Author information

Author notes

    • Yvan Sidis

    Present address Laboratoire L'eon Brillouin, CEA-CNRS, CE-Saclay, 91911 Gif-Sur-Yvette, France

Affiliations

  1. Department of Physics and Astronomy, Louisiana State University, Baton Rouge Louisiana 70803, USA

    • Ncholu Manyala
    • , Yvan Sidis
    • , John F. DiTusa
    •  & David P. Young
  2. London Centre for Nanotechnology and Department of Physics and Astronomy, UCL, London WC1E 6BT, UK

    • Gabriel Aeppli
  3. National High Magnetic Field Facility, Florida State University, Tallahassee, Florida 32306, USA

    • Zachary Fisk
  4. Department of Physics and Electronics, National University of Lesotho, PO Roma 180, Maseru 100, Lesotho

    • Ncholu Manyala

Authors

  1. Search for Ncholu Manyala in:

  2. Search for Yvan Sidis in:

  3. Search for John F. DiTusa in:

  4. Search for Gabriel Aeppli in:

  5. Search for David P. Young in:

  6. Search for Zachary Fisk in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to John F. DiTusa.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat1103

Further reading