Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems


Metal–organic coordination networks (MOCNs) have attracted wide interest because they provide a novel route towards porous materials that may find applications in molecular recognition, catalysis, gas storage and separation1,2. The so-called rational design principle—synthesis of materials with predictable structures and properties—has been explored using appropriate organic molecular linkers connecting to metal nodes to control pore size and functionality of open coordination networks3,4,5,6,7,8,9. Here we demonstrate the fabrication of surface-supported MOCNs comprising tailored pore sizes and chemical functionality by the modular assembly of polytopic organic carboxylate linker molecules and iron atoms on a Cu(100) surface under ultra-high-vacuum conditions. These arrays provide versatile templates for the handling and organization of functional species at the nanoscale, as is demonstrated by their use to accommodate C60 guest molecules. Temperature-controlled studies reveal, at the single-molecule level, how pore size and chemical functionality determine the host–guest interactions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2: Tuning size and topology of nanocavities in metal–organic coordination networks on Cu(100).
Figure 3: Adsorption of single C60 in Fe-TPA host networks.
Figure 4: Adsorption of C60 in Fe-TMLA and Fe-TDA network hosts.


  1. Davis, M.E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    CAS  Article  Google Scholar 

  2. Stein, A. Advances in microporous and mesoporous solids - highlights of recent progress. Adv. Mater. 15, 763–775 (2003).

    CAS  Article  Google Scholar 

  3. Yaghi, O.M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    CAS  Article  Google Scholar 

  4. Fujita, M. Molecular paneling through metal-directed self-assembly. Struct. Bond. 96, 177–201 (2000).

    CAS  Article  Google Scholar 

  5. Seo, J.S. et al. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000).

    CAS  Article  Google Scholar 

  6. Biradha, K., Hongo, Y. & Fujita, M. Open square-grid coordination polymers of the dimensions 20 × 20 Å: Remarkably stable and crystalline solids even after guest removal. Angew. Chem. Intl Edn 39, 3843–3845 (2000).

    CAS  Article  Google Scholar 

  7. Eddaoudi, M. et al. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate networks. Acc. Chem. Res. 34, 319–330 (2001).

    CAS  Article  Google Scholar 

  8. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    CAS  Article  Google Scholar 

  9. Rosi, N.R. et al. Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003).

    CAS  Article  Google Scholar 

  10. Dmitriev, A., Spillmann, H., Lin, N., Barth, J.V. & Kern, K. Modular assembly of two-dimensional metal-organic coordination networks at a metal surface. Angew. Chem. Intl Edn 42, 2670–2673 (2003).

    CAS  Article  Google Scholar 

  11. Chui, S.S.-Y., Lo, S.M.-F., Charmant, J.P.H., Orpen, A.G. & Williams, I.D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n . Science 283, 1148–1150 (1999).

    CAS  Article  Google Scholar 

  12. Mori, W. & Takamizawa, S. Microporous materials of metal carboxylates. J. Sol. Chem. 152, 120–129 (2000).

    CAS  Article  Google Scholar 

  13. Moulton, B., Lu, J., Hajndl, R., Hariharan, S. & Zaworotko, M.J. Crystal engineering of a nanoscale Kagomé lattice. Angew. Chem. Intl Edn 41, 2821–2824 (2002).

    CAS  Article  Google Scholar 

  14. Maspoch, D. et al. A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nature Mater. 2, 190–195 (2003).

    CAS  Article  Google Scholar 

  15. Lin, N., Dmitriev, A., Weckesser, J., Barth, J.V. & Kern, K. Real-time single-molecule imaging of the formation and dynamics of coordination compounds. Angew. Chem. Intl Edn 41, 4779–4783 (2002).

    CAS  Article  Google Scholar 

  16. Messina, P. et al. Direct observation of chiral metal-organic complexes assembled on a Cu(100) surface. J. Am. Chem. Soc. 124, 14000–14001 (2002).

    CAS  Article  Google Scholar 

  17. Lingenfelder, M. et al. Towards surface-supported supramolecular architectures: Tailored coordination assembly of 1,4-benezendicarboxylate and Fe on Cu(100). Chem. Eur. J. (in the press).

  18. Theobald, J.A., Oxtoby, N.S., Phillips, M.A., Champness, N.R. & Beton, P.H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003).

    CAS  Article  Google Scholar 

  19. Rudolf, P. in Proceedings of the International Winterschool on Electronic Properties of Novel Materials. Fullerenes and Fullerene Nanostructures (eds Kuzmany, H., Fink, J., Mehring, M. & Roth, S.) 263–275 (World Scientific, Singapore, 1996).

    Google Scholar 

  20. Hamza, A.V. in Fullerenes: Chemistry, Physics and Technology (eds Kadish, K.M. & Ruoff, R.S.) 531–554 (Wiley, New York, 2000).

    Google Scholar 

  21. Lee, K., Song, H. & Park, J.T. [60]Fullerene - metal cluster complexes: novel bonding modes and electronic communication. Acc. Chem. Res. 36, 78–86 (2003).

    CAS  Article  Google Scholar 

  22. Abel, M. et al. Scanning tunneling microscopy and x-ray photoelectron diffraction investigation of C60 films on Cu(100). Phys. Rev. B 67, 245407 (2003).

    Article  Google Scholar 

  23. Fasel, R., Agostino, R.G., Aebi, P. & Schlapbach, L. Unusual molecular orientation and frozen librational motion of C60 on Cu(110). Phys. Rev. B. 60, 4517–4520 (1999).

    CAS  Article  Google Scholar 

  24. Campbell, T.W. Dicarboxylation of terphenyl. J. Am. Chem. Soc. 82, 3126–3128 (1962).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Nian Lin or Johannes V. Barth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stepanow, S., Lingenfelder, M., Dmitriev, A. et al. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nature Mater 3, 229–233 (2004).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing