Pushing towards the digital storage limit

Ferroelectric materials promise computer memories with the speed of random access memories and the permanence of hard discs. But how will the microstructure of these materials influence the ultimate performance of ferroelectric memories?

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cross-sectional sketch of different nanosized ferroelectric grains.


  1. 1

    Scott, J.F. & Araujo, C.A. Science 246, 1400–1405 (1989).

    CAS  Article  Google Scholar 

  2. 2

    Chu, M.-W. et al. Nature Mater. 3, 87–90 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Waser, R. (ed.) Nanoelectronics and Information Technology (Wiley-VCH, Berlin 2003).

    Google Scholar 

  4. 4

    Junquera, J. & Ghosez, Ph. Nature 422, 506–509 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Roelofs, A., Schneller, T., Szot, K. & Waser, R. Appl. Phys. Lett. 81, 5231–5233 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Neaton, J.B. & Rabe, K.M. Appl. Phys. Lett. 82, 1586–1588 (2002).

    Article  Google Scholar 

  7. 7

    Balzar, D. et al. Jpn J. Appl. Phys. 41, 6628–6632 (2002).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Waser, R., Rüdiger, A. Pushing towards the digital storage limit. Nature Mater 3, 81–82 (2004). https://doi.org/10.1038/nmat1067

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing